示例#1
0
 def test_case_statistics(self):
     from pm4py.statistics.traces.pandas import case_statistics
     df = self.get_dataframe()
     case_statistics.get_cases_description(df)
     case_statistics.get_variants_df(df)
     case_statistics.get_variant_statistics(df)
     #case_statistics.get_variant_statistics_with_case_duration(df)
     case_statistics.get_events(df, "N77802")
     case_statistics.get_variants_df_with_case_duration(df)
     case_statistics.get_variants_df_and_list(df)
     case_statistics.get_kde_caseduration(df)
示例#2
0
def get_variants_count(df, parameters=None):
    """
    Gets the dictionary of variants from the current dataframe

    Parameters
    --------------
    df
        Dataframe
    parameters
        Possible parameters of the algorithm, including:
            Parameters.ACTIVITY_KEY -> Column that contains the activity

    Returns
    --------------
    variants_set
        Dictionary of variants in the log
    """
    if parameters is None:
        parameters = {}
    var_stats = case_statistics.get_variant_statistics(df,
                                                       parameters=parameters)
    if var_stats:
        count_key = list(x for x in var_stats[0].keys()
                         if not x == "variant")[0]
        return {x["variant"]: x[count_key] for x in var_stats}
    return {}
示例#3
0
def get_variants_list(log, parameters=None):
    """
    Gets the list of variants (along with their count) from the particular log_skeleton type

    Parameters
    ------------
    log
        Log
    parameters
        Parameters of the algorithm

    Returns
    -------------
    variants_list
        List of variants of the log_skeleton (along with their count)
    """
    from pm4py.statistics.traces.pandas import case_statistics as pd_case_statistics
    from pm4py.statistics.traces.log import case_statistics as log_case_statistics

    variants_list = []
    if type(log) is pd.DataFrame:
        pd_variants = pd_case_statistics.get_variant_statistics(
            log, parameters=parameters)
        for var in pd_variants:
            varkeys = list(var.keys())
            del varkeys[varkeys.index("variant")]
            variants_list.append((var["variant"], var[varkeys[0]]))
    else:
        log_variants = log_case_statistics.get_variant_statistics(
            log, parameters=parameters)
        for var in log_variants:
            varkeys = list(var.keys())
            del varkeys[varkeys.index("variant")]
            variants_list.append((var["variant"], var[varkeys[0]]))
    return variants_list
def apply(df, parameters=None):
    """
    Convert a dataframe into a log containing 1 case per variant (only control-flow
    perspective is considered)

    Parameters
    -------------
    df
        Dataframe
    parameters
        Parameters of the algorithm

    Returns
    -------------
    log
        Event log
    """
    if parameters is None:
        parameters = {}
    variant_stats = case_statistics.get_variant_statistics(
        df, parameters=parameters)
    log = EventLog()
    for vd in variant_stats:
        variant = vd['variant'].split(",")
        trace = Trace()
        for activity in variant:
            event = Event()
            event[xes.DEFAULT_NAME_KEY] = activity
            trace.append(event)
        log.append(trace)
    return log
示例#5
0
def apply(df, parameters=None):
    """
    Convert a dataframe into a log containing 1 case per variant (only control-flow
    perspective is considered)

    Parameters
    -------------
    df
        Dataframe
    parameters
        Parameters of the algorithm

    Returns
    -------------
    log
        Event log
    """
    from pm4py.statistics.traces.pandas import case_statistics

    if parameters is None:
        parameters = {}
    variant_stats = case_statistics.get_variant_statistics(df, parameters=parameters)
    activity_key = parameters[
        pm4_constants.PARAMETER_CONSTANT_ACTIVITY_KEY] if pm4_constants.PARAMETER_CONSTANT_ACTIVITY_KEY in parameters else xes.DEFAULT_NAME_KEY
    log = EventLog()
    for vd in variant_stats:
        variant = vd['variant'].split(",")
        trace = Trace()
        for activity in variant:
            event = Event()
            event[activity_key] = activity
            trace.append(event)
        log.append(trace)
    return log
示例#6
0
def apply(log, parameters=None):
    """
    Calculates the Working Together metric

    Parameters
    ------------
    log
        Log
    parameters
        Possible parameters of the algorithm

    Returns
    -----------
    tuple
        Tuple containing the metric matrix and the resources list. Moreover, last boolean indicates that the metric is
        not directed.
    """

    if parameters is None:
        parameters = {}

    import numpy
    from pm4py.statistics.traces.pandas import case_statistics

    resource_key = exec_utils.get_param_value(Parameters.RESOURCE_KEY,
                                              parameters,
                                              xes.DEFAULT_RESOURCE_KEY)

    parameters_variants = {
        case_statistics.Parameters.ACTIVITY_KEY: resource_key,
        case_statistics.Parameters.ATTRIBUTE_KEY: resource_key
    }
    variants_occ = {
        x["variant"]: x["case:concept:name"]
        for x in case_statistics.get_variant_statistics(
            log, parameters=parameters_variants)
    }
    variants_resources = list(variants_occ.keys())
    resources = [x.split(",") for x in variants_resources]
    flat_list = sorted(
        list(set([item for sublist in resources for item in sublist])))

    metric_matrix = numpy.zeros((len(flat_list), len(flat_list)))

    for rv in resources:
        ord_res_list = sorted(list(set(rv)))

        for i in range(len(ord_res_list) - 1):
            res_i = flat_list.index(ord_res_list[i])
            for j in range(i + 1, len(ord_res_list)):
                res_j = flat_list.index(ord_res_list[j])
                metric_matrix[res_i, res_j] += float(
                    variants_occ[",".join(rv)]) / float(len(log))
                metric_matrix[res_j, res_i] += float(
                    variants_occ[",".join(rv)]) / float(len(log))

    return [metric_matrix, flat_list, False]
示例#7
0
 def test_25(self):
     from pm4py.statistics.traces.pandas import case_statistics
     df = self.load_running_example_df()
     variants_count = case_statistics.get_variant_statistics(df,
                                                             parameters={
                                                                 case_statistics.Parameters.CASE_ID_KEY: "case:concept:name",
                                                                 case_statistics.Parameters.ACTIVITY_KEY: "concept:name",
                                                                 case_statistics.Parameters.TIMESTAMP_KEY: "time:timestamp"})
     variants_count = sorted(variants_count, key=lambda x: x['case:concept:name'], reverse=True)
示例#8
0
def get_variants(path, log_name, managed_logs, parameters=None):
    if parameters is None:
        parameters = {}

    no_samples = parameters[PARAMETER_NO_SAMPLES] if PARAMETER_NO_SAMPLES in parameters else DEFAULT_MAX_NO_SAMPLES
    use_transition = parameters[
        PARAMETER_USE_TRANSITION] if PARAMETER_USE_TRANSITION in parameters else DEFAULT_USE_TRANSITION
    window_size = parameters[PARAMETER_NUM_RET_ITEMS] if PARAMETER_NUM_RET_ITEMS in parameters else DEFAULT_WINDOW_SIZE
    start = parameters[PARAMETER_START] if PARAMETER_START in parameters else 0
    activity_key = DEFAULT_NAME_KEY if not use_transition else PARAMETER_PM4PYWS_CLASSIFIER
    filters = parameters[FILTERS] if FILTERS in parameters else []
    parameters[pm4py_constants.PARAMETER_CONSTANT_ACTIVITY_KEY] = activity_key

    folder = os.path.join(path, log_name)
    columns = get_columns_to_import(filters, [CASE_CONCEPT_NAME, DEFAULT_NAME_KEY, DEFAULT_TIMESTAMP_KEY],
                                    use_transition=use_transition)

    parquet_list = parquet_importer.get_list_parquet(folder)

    dictio_variants = {}
    events = 0
    cases = 0

    count = 0
    for index, pq in enumerate(parquet_list):
        pq_basename = Path(pq).name
        if pq_basename in managed_logs:
            count = count + 1
            df = get_filtered_parquet(pq, columns, filters, use_transition=use_transition, parameters=parameters,
                                      force_classifier_insertion=True)

            events = events + len(df)
            cases = cases + df[CASE_CONCEPT_NAME].nunique()

            # dictio = dictio + Counter(dict(df[attribute_key].value_counts()))
            stats = case_statistics.get_variant_statistics(df)
            d_variants = {x["variant"]: x for x in stats}

            for variant in d_variants:
                d_variants[variant]["count"] = d_variants[variant]["case:concept:name"]
                del d_variants[variant]["case:concept:name"]
                if not variant in dictio_variants:
                    dictio_variants[variant] = d_variants[variant]
                else:
                    dictio_variants[variant]["count"] = dictio_variants[variant]["count"] + d_variants[variant]["count"]

            list_variants = sorted(list(dictio_variants.values()), key=lambda x: x["count"], reverse=True)
            list_variants = list_variants[start:min(len(list_variants), window_size)]
            dictio_variants = {x["variant"]: x for x in list_variants}

            if count >= no_samples:
                break

    list_variants = sorted(list(dictio_variants.values()), key=lambda x: x["count"], reverse=True)

    return {"variants": list_variants, "events": events, "cases": cases}
示例#9
0
 def test_filtering_variants(self):
     # to avoid static method warnings in tests,
     # that by construction of the unittest package have to be expressed in such way
     self.dummy_variable = "dummy_value"
     input_log = os.path.join(INPUT_DATA_DIR, "running-example.csv")
     dataframe = csv_import_adapter.import_dataframe_from_path_wo_timeconversion(input_log, sep=',')
     variants = case_statistics.get_variant_statistics(dataframe)
     chosen_variants = [variants[0]["variant"]]
     dataframe = variants_filter.apply(dataframe, chosen_variants)
     del dataframe
 def test_filtering_variants(self):
     # to avoid static method warnings in tests,
     # that by construction of the unittest package have to be expressed in such way
     self.dummy_variable = "dummy_value"
     input_log = os.path.join(INPUT_DATA_DIR, "running-example.csv")
     dataframe = pd.read_csv(input_log)
     dataframe = dataframe_utils.convert_timestamp_columns_in_df(dataframe)
     variants = case_statistics.get_variant_statistics(dataframe)
     chosen_variants = [variants[0]["variant"]]
     dataframe = variants_filter.apply(dataframe, chosen_variants)
     del dataframe
示例#11
0
def apply(df, parameters=None):
    """
    Convert a dataframe into a log containing N case per variant (only control-flow
    perspective is considered)

    Parameters
    -------------
    df
        Dataframe
    parameters
        Parameters of the algorithm

    Returns
    -------------
    log
        Event log
    """
    from pm4py.statistics.traces.pandas import case_statistics

    if parameters is None:
        parameters = {}

    return_variants = parameters[
        RETURN_VARIANTS] if RETURN_VARIANTS in parameters else False

    case_glue = parameters[
        pm4_constants.
        PARAMETER_CONSTANT_CASEID_KEY] if pm4_constants.PARAMETER_CONSTANT_CASEID_KEY in parameters else pm4_constants.CASE_CONCEPT_NAME
    activity_key = parameters[
        pm4_constants.
        PARAMETER_CONSTANT_ACTIVITY_KEY] if pm4_constants.PARAMETER_CONSTANT_ACTIVITY_KEY in parameters else xes.DEFAULT_NAME_KEY

    variant_stats = case_statistics.get_variant_statistics(
        df, parameters=parameters)

    log = EventLog()
    all_variants_log = {}
    for vd in variant_stats:
        variant = vd['variant'].split(",")
        variant_count = vd[case_glue]
        trace = Trace()
        for activity in variant:
            event = Event()
            event[activity_key] = activity
            trace.append(event)
        all_variants_log[vd['variant']] = []
        for i in range(variant_count):
            log.append(trace)
            all_variants_log[vd['variant']].append(len(log) - 1)

    if return_variants:
        return log, all_variants_log

    return log
示例#12
0
def apply_auto_filter(df, parameters=None):
    """
    Apply an automatic filter on variants

    Parameters
    -----------
    df
        Dataframe
    parameters
        Parameters of the algorithm, including:
            Parameters.CASE_ID_KEY -> Column that contains the Case ID
            Parameters.ACTIVITY_KEY -> Column that contains the activity
            variants_df -> If provided, avoid recalculation of the variants dataframe
            Parameters.DECREASING_FACTOR -> Decreasing factor that should be passed to the algorithm

    Returns
    -----------
    df
        Filtered dataframe
    """
    if parameters is None:
        parameters = {}
    case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY,
                                              parameters, CASE_CONCEPT_NAME)
    decreasing_factor = exec_utils.get_param_value(
        Parameters.DECREASING_FACTOR, parameters,
        filtering_constants.DECREASING_FACTOR)
    variants_df = case_statistics.get_variants_df(df, parameters=parameters)
    parameters["variants_df"] = variants_df
    variants = case_statistics.get_variant_statistics(df,
                                                      parameters=parameters)

    admitted_variants = []
    if len(variants) > 0:
        current_variant_count = variants[0][case_id_glue]

        for i in range(len(variants)):
            if variants[i][
                    case_id_glue] >= decreasing_factor * current_variant_count:
                admitted_variants.append(variants[i]["variant"])
            else:
                break
            current_variant_count = variants[i][case_id_glue]

    return apply(df, admitted_variants, parameters=parameters)
示例#13
0
def apply_auto_filter(df, parameters=None):
    """
    Apply an automatic filter on variants

    Parameters
    -----------
    df
        Dataframe
    parameters
        Parameters of the algorithm, including:
            case_id_glue -> Column that contains the Case ID
            activity_key -> Column that contains the activity
            variants_df -> If provided, avoid recalculation of the variants dataframe
            decreasingFactor -> Decreasing factor that should be passed to the algorithm

    Returns
    -----------
    df
        Filtered dataframe
    """
    if parameters is None:
        parameters = {}
    case_id_glue = parameters[
        PARAMETER_CONSTANT_CASEID_KEY] if PARAMETER_CONSTANT_CASEID_KEY in parameters else CASE_CONCEPT_NAME
    variants_df = case_statistics.get_variants_df(df, parameters=parameters)
    parameters["variants_df"] = variants_df
    variants = case_statistics.get_variant_statistics(df,
                                                      parameters=parameters)
    decreasing_factor = parameters[
        "decreasingFactor"] if "decreasingFactor" in parameters else filtering_constants.DECREASING_FACTOR

    admitted_variants = []
    if len(variants) > 0:
        current_variant_count = variants[0][case_id_glue]

        for i in range(len(variants)):
            if variants[i][
                    case_id_glue] >= decreasing_factor * current_variant_count:
                admitted_variants.append(variants[i]["variant"])
            else:
                break
            current_variant_count = variants[i][case_id_glue]

    return apply(df, admitted_variants, parameters=parameters)
示例#14
0
def get_variants_set(df, parameters=None):
    """
    Gets the set of variants from the current dataframe

    Parameters
    --------------
    df
        Dataframe
    parameters
        Possible parameters of the algorithm, including:
            activity_key -> Column that contains the activity

    Returns
    --------------
    variants_set
        Set of variants in the log
    """
    if parameters is None:
        parameters = {}
    var_stats = case_statistics.get_variant_statistics(df, parameters=parameters)
    return set(x["variant"] for x in var_stats)
示例#15
0
def apply(log, parameters=None):
    """
    Calculates the Subcontracting metric

    Parameters
    ------------
    log
        Log
    parameters
        Possible parameters of the algorithm:
            Parameters.N -> n of the algorithm proposed in the Wil SNA paper

    Returns
    -----------
    tuple
        Tuple containing the metric matrix and the resources list
    """
    if parameters is None:
        parameters = {}

    import numpy
    from pm4py.statistics.traces.pandas import case_statistics

    resource_key = exec_utils.get_param_value(Parameters.RESOURCE_KEY,
                                              parameters,
                                              xes.DEFAULT_RESOURCE_KEY)
    n = exec_utils.get_param_value(Parameters.N, parameters, 2)

    parameters_variants = {
        case_statistics.Parameters.ACTIVITY_KEY: resource_key,
        case_statistics.Parameters.ATTRIBUTE_KEY: resource_key
    }
    variants_occ = {
        x["variant"]: x["case:concept:name"]
        for x in case_statistics.get_variant_statistics(
            log, parameters=parameters_variants)
    }
    variants_resources = list(variants_occ.keys())
    resources = [x.split(",") for x in variants_resources]
    flat_list = sorted(
        list(set([item for sublist in resources for item in sublist])))

    metric_matrix = numpy.zeros((len(flat_list), len(flat_list)))

    sum_i_to_j = {}

    for rv in resources:
        for i in range(len(rv) - n):
            res_i = flat_list.index(rv[i])
            res_i_n = flat_list.index(rv[i + n])
            if res_i == res_i_n:
                if res_i not in sum_i_to_j:
                    sum_i_to_j[res_i] = {}
                    for j in range(i + 1, i + n):
                        res_j = flat_list.index(rv[j])
                        if res_j not in sum_i_to_j[res_i]:
                            sum_i_to_j[res_i][res_j] = 0
                        sum_i_to_j[res_i][res_j] += variants_occ[",".join(rv)]

    dividend = 0
    for rv in resources:
        dividend = dividend + variants_occ[",".join(rv)] * (len(rv) - 1)

    for key1 in sum_i_to_j:
        for key2 in sum_i_to_j[key1]:
            metric_matrix[key1][key2] = sum_i_to_j[key1][key2] / dividend

    return [metric_matrix, flat_list, True]
示例#16
0
 def test_24(self):
     from pm4py.statistics.traces.log import case_statistics
     log = self.load_running_example_xes()
     variants_count = case_statistics.get_variant_statistics(log)
     variants_count = sorted(variants_count, key=lambda x: x['count'], reverse=True)
def apply(df, parameters=None):
    """
    Returns a Pandas dataframe from which a sound workflow net could be extracted taking into account
    a discovery algorithm returning models only with visible transitions

    Parameters
    ------------
    df
        Pandas dataframe
    parameters
        Possible parameters of the algorithm, including:
            max_no_variants -> Maximum number of variants to consider to return a Petri net

    Returns
    ------------
    filtered_df
        Filtered dataframe
    """
    if parameters is None:
        parameters = {}

    if PARAMETER_CONSTANT_CASEID_KEY not in parameters:
        parameters[PARAMETER_CONSTANT_CASEID_KEY] = CASE_CONCEPT_NAME
    if PARAMETER_CONSTANT_ACTIVITY_KEY not in parameters:
        parameters[PARAMETER_CONSTANT_ACTIVITY_KEY] = DEFAULT_NAME_KEY
    if PARAMETER_CONSTANT_TIMESTAMP_KEY not in parameters:
        parameters[PARAMETER_CONSTANT_TIMESTAMP_KEY] = DEFAULT_TIMESTAMP_KEY
    if PARAMETER_CONSTANT_ATTRIBUTE_KEY not in parameters:
        parameters[PARAMETER_CONSTANT_ATTRIBUTE_KEY] = parameters[
            PARAMETER_CONSTANT_ACTIVITY_KEY]

    caseid_glue = parameters[PARAMETER_CONSTANT_CASEID_KEY]
    activity_key = parameters[PARAMETER_CONSTANT_ACTIVITY_KEY]
    timest_key = parameters[PARAMETER_CONSTANT_TIMESTAMP_KEY]

    max_no_variants = parameters[
        "max_no_variants"] if "max_no_variants" in parameters else 20

    variants_df = case_statistics.get_variants_df(df, parameters=parameters)
    parameters["variants_df"] = variants_df

    variant_stats = case_statistics.get_variant_statistics(
        df, parameters=parameters)

    all_variants_list = []
    for var in variant_stats:
        all_variants_list.append([var["variant"], var[caseid_glue]])

    all_variants_list = sorted(all_variants_list,
                               key=lambda x: (x[1], x[0]),
                               reverse=True)

    considered_variants = []
    considered_traces = []

    i = 0
    while i < min(len(all_variants_list), max_no_variants):
        variant = all_variants_list[i][0]

        considered_variants.append(variant)

        filtered_df = variants_filter.apply(df,
                                            considered_variants,
                                            parameters=parameters)

        dfg_frequency = dfg_util.get_dfg_graph(filtered_df,
                                               measure="frequency",
                                               perf_aggregation_key="median",
                                               case_id_glue=caseid_glue,
                                               activity_key=activity_key,
                                               timestamp_key=timest_key)

        net, initial_marking, final_marking = alpha_miner.apply_dfg(
            dfg_frequency, parameters=parameters)

        is_sound = check_soundness.check_petri_wfnet_and_soundness(net)
        if not is_sound:
            del considered_variants[-1]
        else:
            traces_of_this_variant = variants_filter.apply(
                df, [variant], parameters=parameters).groupby(caseid_glue)
            traces_of_this_variant_keys = list(
                traces_of_this_variant.groups.keys())
            trace_of_this_variant = traces_of_this_variant.get_group(
                traces_of_this_variant_keys[0])

            this_trace = transform.transform_event_log_to_trace_log(
                pandas_df_imp.convert_dataframe_to_event_log(
                    trace_of_this_variant),
                case_glue=caseid_glue)[0]
            if not activity_key == DEFAULT_NAME_KEY:
                for j in range(len(this_trace)):
                    this_trace[j][DEFAULT_NAME_KEY] = this_trace[j][
                        activity_key]
            considered_traces.append(this_trace)
            filtered_log = TraceLog(considered_traces)

            try:
                alignments = alignment_factory.apply(filtered_log, net,
                                                     initial_marking,
                                                     final_marking)
                del alignments
                fitness = replay_fitness_factory.apply(filtered_log,
                                                       net,
                                                       initial_marking,
                                                       final_marking,
                                                       parameters=parameters)
                if fitness["log_fitness"] < 0.99999:
                    del considered_variants[-1]
                    del considered_traces[-1]
            except TypeError:
                del considered_variants[-1]
                del considered_traces[-1]

        i = i + 1

    return variants_filter.apply(df,
                                 considered_variants,
                                 parameters=parameters)
示例#18
0
def apply(log, parameters=None):
    """
    Calculates the HW metric

    Parameters
    ------------
    log
        Log
    parameters
        Possible parameters of the algorithm:
            Paramters.BETA -> beta value as described in the Wil SNA paper

    Returns
    -----------
    tuple
        Tuple containing the metric matrix and the resources list. Moreover, last boolean indicates that the metric is
        directed.
    """
    if parameters is None:
        parameters = {}

    resource_key = exec_utils.get_param_value(Parameters.RESOURCE_KEY, parameters, xes.DEFAULT_RESOURCE_KEY)
    beta = exec_utils.get_param_value(Parameters.BETA, parameters, 0)

    parameters_variants = {case_statistics.Parameters.ACTIVITY_KEY: resource_key,
                           case_statistics.Parameters.ATTRIBUTE_KEY: resource_key}

    variants_occ = {x["variant"]: x["case:concept:name"] for x in
                    case_statistics.get_variant_statistics(log, parameters=parameters_variants)}
    variants_resources = list(variants_occ.keys())
    resources = [x.split(",") for x in variants_resources]
    flat_list = sorted(list(set([item for sublist in resources for item in sublist])))

    metric_matrix = numpy.zeros((len(flat_list), len(flat_list)))

    sum_i_to_j = {}

    for rv in resources:
        for i in range(len(rv) - 1):
            res_i = flat_list.index(rv[i])
            if not res_i in sum_i_to_j:
                sum_i_to_j[res_i] = {}
            for j in range(i + 1, len(rv)):
                res_j = flat_list.index(rv[j])
                if not res_j in sum_i_to_j[res_i]:
                    sum_i_to_j[res_i][res_j] = 0
                if beta == 0:
                    sum_i_to_j[res_i][res_j] += variants_occ[",".join(rv)]
                    break
                else:
                    sum_i_to_j[res_i][res_j] += variants_occ[",".join(rv)] * (beta ** (j - i - 1))

    dividend = 0
    for rv in resources:
        if beta == 0:
            dividend = dividend + variants_occ[",".join(rv)] * (len(rv) - 1)
        else:
            dividend = dividend + variants_occ[",".join(rv)] * (len(rv) - 1)

    for key1 in sum_i_to_j:
        for key2 in sum_i_to_j[key1]:
            metric_matrix[key1][key2] = sum_i_to_j[key1][key2] / dividend

    return [metric_matrix, flat_list, True]
示例#19
0
def apply(log, parameters=None):
    """
    Calculates the Subcontracting metric

    Parameters
    ------------
    log
        Log
    parameters
        Possible parameters of the algorithm:
            n -> n of the algorithm proposed in the Wil SNA paper

    Returns
    -----------
    tuple
        Tuple containing the metric matrix and the resources list
    """
    if parameters is None:
        parameters = {}

    resource_key = parameters[
        constants.
        PARAMETER_CONSTANT_RESOURCE_KEY] if constants.PARAMETER_CONSTANT_RESOURCE_KEY in parameters else xes.DEFAULT_RESOURCE_KEY
    n = parameters[N] if N in parameters else 2

    parameters_variants = {
        constants.PARAMETER_CONSTANT_ACTIVITY_KEY: resource_key,
        constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY: resource_key
    }
    variants_occ = {
        x["variant"]: x["case:concept:name"]
        for x in get_variant_statistics(log, parameters=parameters_variants)
    }
    variants_resources = list(variants_occ.keys())
    resources = [x.split(",") for x in variants_resources]
    flat_list = sorted(
        list(set([item for sublist in resources for item in sublist])))

    metric_matrix = numpy.zeros((len(flat_list), len(flat_list)))

    sum_i_to_j = {}

    for rv in resources:
        for i in range(len(rv) - n):
            res_i = flat_list.index(rv[i])
            res_i_n = flat_list.index(rv[i + n])
            if res_i == res_i_n:
                if res_i not in sum_i_to_j:
                    sum_i_to_j[res_i] = {}
                    for j in range(i + 1, i + n):
                        res_j = flat_list.index(rv[j])
                        if res_j not in sum_i_to_j[res_i]:
                            sum_i_to_j[res_i][res_j] = 0
                        sum_i_to_j[res_i][res_j] += variants_occ[",".join(rv)]

    dividend = 0
    for rv in resources:
        dividend = dividend + variants_occ[",".join(rv)] * (len(rv) - 1)

    for key1 in sum_i_to_j:
        for key2 in sum_i_to_j[key1]:
            metric_matrix[key1][key2] = sum_i_to_j[key1][key2] / dividend

    return (metric_matrix, flat_list, True)