def main(): """ NAME thellier_magic.py DESCRIPTION plots Thellier-Thellier, allowing interactive setting of bounds and customizing of selection criteria. Saves and reads interpretations from a pmag_specimen formatted table, default: thellier_specimens.txt SYNTAX thellier_magic.py [command line options] OPTIONS -h prints help message and quits -f MEAS, set magic_measurements input file -fsp PRIOR, set pmag_specimen prior interpretations file -fan ANIS, set rmag_anisotropy file for doing the anisotropy corrections -fcr CRIT, set criteria file for grading. -fmt [svg,png,jpg], format for images - default is svg -sav, saves plots with out review (default format) -spc SPEC, plots single specimen SPEC, saves plot with specified format with optional -b bounds adn quits -b BEG END: sets bounds for calculation BEG: starting step for slope calculation END: ending step for slope calculation -z use only z component difference for pTRM calculation DEFAULTS MEAS: magic_measurements.txt REDO: thellier_redo CRIT: NONE PRIOR: NONE OUTPUT figures: ALL: numbers refer to temperature steps in command line window 1) Arai plot: closed circles are zero-field first/infield open circles are infield first/zero-field triangles are pTRM checks squares are pTRM tail checks VDS is vector difference sum diamonds are bounds for interpretation 2) Zijderveld plot: closed (open) symbols are X-Y (X-Z) planes X rotated to NRM direction 3) (De/Re)Magnetization diagram: circles are NRM remaining squares are pTRM gained 4) equal area projections: green triangles are pTRM gained direction red (purple) circles are lower(upper) hemisphere of ZI step directions blue (cyan) squares are lower(upper) hemisphere IZ step directions 5) Optional: TRM acquisition 6) Optional: TDS normalization command line window: list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of magic_measuements) list of possible commands: type letter followed by return to select option saving of plots creates .svg format files with specimen_name, plot type as name """ # # initializations # meas_file, critout, inspec = "magic_measurements.txt", "", "thellier_specimens.txt" first = 1 inlt = 0 version_num = pmag.get_version() TDinit, Tinit, field, first_save = 0, 0, -1, 1 user, comment, AniSpec, locname = "", '', "", "" ans, specimen, recnum, start, end = 0, 0, 0, 0, 0 plots, pmag_out, samp_file, style = 0, "", "", "svg" verbose = pmagplotlib.verbose fmt = '.' + style # # default acceptance criteria # accept = pmag.default_criteria(0)[0] # set the default criteria # # parse command line options # Zdiff, anis = 0, 0 spc, BEG, END = "", "", "" if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') meas_file = sys.argv[ind + 1] if '-fsp' in sys.argv: ind = sys.argv.index('-fsp') inspec = sys.argv[ind + 1] if '-fan' in sys.argv: ind = sys.argv.index('-fan') anisfile = sys.argv[ind + 1] anis = 1 anis_data, file_type = pmag.magic_read(anisfile) if verbose: print("Anisotropy data read in from ", anisfile) if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = '.' + sys.argv[ind + 1] if '-dpi' in sys.argv: ind = sys.argv.index('-dpi') dpi = '.' + sys.argv[ind + 1] else: dpi = 100 if '-sav' in sys.argv: plots = 1 verbose = 0 if '-z' in sys.argv: Zdiff = 1 if '-spc' in sys.argv: ind = sys.argv.index('-spc') spc = sys.argv[ind + 1] if '-b' in sys.argv: ind = sys.argv.index('-b') BEG = int(sys.argv[ind + 1]) END = int(sys.argv[ind + 2]) if '-fcr' in sys.argv: ind = sys.argv.index('-fcr') critout = sys.argv[ind + 1] crit_data, file_type = pmag.magic_read(critout) if file_type != 'pmag_criteria': if verbose: print('bad pmag_criteria file, using no acceptance criteria') accept = pmag.default_criteria(1)[0] else: if verbose: print("Acceptance criteria read in from ", critout) accept = { 'pmag_criteria_code': 'ACCEPTANCE', 'er_citation_names': 'This study' } for critrec in crit_data: if 'sample_int_sigma_uT' in critrec.keys( ): # accommodate Shaar's new criterion critrec['sample_int_sigma'] = '%10.3e' % ( eval(critrec['sample_int_sigma_uT']) * 1e-6) for key in critrec.keys(): if key not in accept.keys() and critrec[key] != '': accept[key] = critrec[key] try: open(inspec, 'rU') PriorRecs, file_type = pmag.magic_read(inspec) if file_type != 'pmag_specimens': print(file_type) print(file_type, inspec, " is not a valid pmag_specimens file ") sys.exit() for rec in PriorRecs: if 'magic_software_packages' not in rec.keys(): rec['magic_software_packages'] = "" except IOError: PriorRecs = [] if verbose: print("starting new specimen interpretation file: ", inspec) meas_data, file_type = pmag.magic_read(meas_file) if file_type != 'magic_measurements': print(file_type) print(file_type, "This is not a valid magic_measurements file ") sys.exit() backup = 0 # define figure numbers for arai, zijderveld and # de-,re-magization diagrams AZD = {} AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4 pmagplotlib.plot_init(AZD['arai'], 5, 5) pmagplotlib.plot_init(AZD['zijd'], 5, 5) pmagplotlib.plot_init(AZD['deremag'], 5, 5) pmagplotlib.plot_init(AZD['eqarea'], 5, 5) # # # # get list of unique specimen names # CurrRec = [] sids = pmag.get_specs(meas_data) # get plots for specimen s - default is just to step through arai diagrams # if spc != "": specimen = sids.index(spc) while specimen < len(sids): methcodes = [] if verbose: print(sids[specimen], specimen + 1, 'of ', len(sids)) MeasRecs = [] s = sids[specimen] datablock, trmblock, tdsrecs = [], [], [] PmagSpecRec = {} if first == 0: for key in keys: # make sure all new records have same set of keys PmagSpecRec[key] = "" PmagSpecRec["er_analyst_mail_names"] = user PmagSpecRec["specimen_correction"] = 'u' # # find the data from the meas_data file for this specimen # for rec in meas_data: if rec["er_specimen_name"] == s: MeasRecs.append(rec) if "magic_method_codes" not in rec.keys(): rec["magic_method_codes"] = "" methods = rec["magic_method_codes"].split(":") meths = [] for meth in methods: meths.append(meth.strip()) # take off annoying spaces methods = "" for meth in meths: if meth.strip() not in methcodes and "LP-" in meth: methcodes.append(meth.strip()) methods = methods + meth + ":" methods = methods[:-1] rec["magic_method_codes"] = methods if "LP-PI-TRM" in meths: datablock.append(rec) if "LP-TRM" in meths: trmblock.append(rec) if "LP-TRM-TD" in meths: tdsrecs.append(rec) if len(trmblock) > 2 and inspec != "": if Tinit == 0: Tinit = 1 AZD['TRM'] = 5 pmagplotlib.plot_init(AZD['TRM'], 5, 5) elif Tinit == 1: # clear the TRM figure if not needed pmagplotlib.clearFIG(AZD['TRM']) if len(tdsrecs) > 2: if TDinit == 0: TDinit = 1 AZD['TDS'] = 6 pmagplotlib.plot_init(AZD['TDS'], 5, 5) elif TDinit == 1: # clear the TDS figure if not needed pmagplotlib.clearFIG(AZD['TDS']) if len(datablock) < 4: if backup == 0: specimen += 1 if verbose: print('skipping specimen - moving forward ', s) else: specimen -= 1 if verbose: print('skipping specimen - moving backward ', s) # # collect info for the PmagSpecRec dictionary # else: rec = datablock[0] PmagSpecRec["er_citation_names"] = "This study" PmagSpecRec["er_specimen_name"] = s PmagSpecRec["er_sample_name"] = rec["er_sample_name"] PmagSpecRec["er_site_name"] = rec["er_site_name"] PmagSpecRec["er_location_name"] = rec["er_location_name"] locname = rec['er_location_name'].replace('/', '-') if "er_expedition_name" in rec.keys(): PmagSpecRec["er_expedition_name"] = rec["er_expedition_name"] if "magic_instrument_codes" not in rec.keys(): rec["magic_instrument_codes"] = "" PmagSpecRec["magic_instrument_codes"] = rec[ "magic_instrument_codes"] PmagSpecRec["measurement_step_unit"] = "K" if "magic_experiment_name" not in rec.keys(): rec["magic_experiment_name"] = "" else: PmagSpecRec["magic_experiment_names"] = rec[ "magic_experiment_name"] meths = rec["magic_method_codes"].split() # sort data into types araiblock, field = pmag.sortarai(datablock, s, Zdiff) first_Z = araiblock[0] GammaChecks = araiblock[5] if len(first_Z) < 3: if backup == 0: specimen += 1 if verbose: print('skipping specimen - moving forward ', s) else: specimen -= 1 if verbose: print('skipping specimen - moving backward ', s) else: backup = 0 zijdblock, units = pmag.find_dmag_rec(s, meas_data) recnum = 0 if verbose: print("index step Dec Inc Int Gamma") for plotrec in zijdblock: if GammaChecks != "": gamma = "" for g in GammaChecks: if g[0] == plotrec[0] - 273: gamma = g[1] break if gamma != "": print('%i %i %7.1f %7.1f %8.3e %7.1f' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3], gamma)) else: print('%i %i %7.1f %7.1f %8.3e ' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3])) recnum += 1 pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, s, units[0]) if verbose: pmagplotlib.draw_figs(AZD) if len(tdsrecs) > 2: # a TDS experiment tdsblock = [] # make a list for the TDS data Mkeys = [ 'measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measuruement_magn_mass' ] mkey, k = "", 0 # find which type of intensity while mkey == "" and k < len(Mkeys) - 1: key = Mkeys[k] if key in tdsrecs[0].keys() and tdsrecs[0][key] != "": mkey = key k += 1 if mkey == "": break # get outta here Tnorm = "" for tdrec in tdsrecs: meths = tdrec['magic_method_codes'].split(":") for meth in meths: # strip off potential nasty spaces meth.replace(" ", "") if 'LT-T-I' in meths and Tnorm == "": # found first total TRM # normalize by total TRM Tnorm = float(tdrec[mkey]) # put in the zero step tdsblock.append([273, zijdblock[0][3] / Tnorm, 1.]) # found a LP-TRM-TD demag step, now need complementary LT-T-Z from zijdblock if 'LT-T-Z' in meths and Tnorm != "": step = float(tdrec['treatment_temp']) Tint = "" if mkey != "": Tint = float(tdrec[mkey]) if Tint != "": for zrec in zijdblock: if zrec[0] == step: # found matching tdsblock.append([ step, zrec[3] / Tnorm, Tint / Tnorm ]) break if len(tdsblock) > 2: pmagplotlib.plot_tds(AZD['TDS'], tdsblock, s + ':LP-PI-TDS:') if verbose: pmagplotlib(draw_figs(AZD)) else: print("Something wrong here") if anis == 1: # look up anisotropy data for this specimen AniSpec = "" for aspec in anis_data: if aspec["er_specimen_name"] == PmagSpecRec[ "er_specimen_name"]: AniSpec = aspec if verbose: print('Found anisotropy record...') break if inspec != "": if verbose: print('Looking up saved interpretation....') found = 0 for k in range(len(PriorRecs)): try: if PriorRecs[k]["er_specimen_name"] == s: found = 1 CurrRec.append(PriorRecs[k]) for j in range(len(zijdblock)): if float(zijdblock[j][0]) == float( PriorRecs[k] ["measurement_step_min"]): start = j if float(zijdblock[j][0]) == float( PriorRecs[k] ["measurement_step_max"]): end = j pars, errcode = pmag.PintPars( datablock, araiblock, zijdblock, start, end, accept) pars['measurement_step_unit'] = "K" pars['experiment_type'] = 'LP-PI-TRM' # put in CurrRec, take out of PriorRecs del PriorRecs[k] if errcode != 1: pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * \ field*pars["specimen_b"] pars["er_specimen_name"] = s if verbose: print('Saved interpretation: ') pars, kill = pmag.scoreit( pars, PmagSpecRec, accept, '', verbose) pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars) if verbose: pmagplotlib.draw_figs(AZD) if len(trmblock) > 2: blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append( float( trec['treatment_dc_field']) ) TRMs.append( float(trec[ 'measurement_magn_moment']) ) # calculate best fit parameters through TRM acquisition data, and get new banc NLpars = nlt.NLtrm( Bs, TRMs, best, blab, 0) Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) # predicted NRM for this field npred = nlt.TRM( Bp[-1], NLpars['xopt'][0], NLpars['xopt'][1]) Mp.append(npred) pmagplotlib.plot_trm( AZD['TRM'], Bs, TRMs, Bp, Mp, NLpars, trec['magic_experiment_name']) PmagSpecRec['specimen_int'] = NLpars[ 'banc'] if verbose: print('Banc= ', float(NLpars['banc']) * 1e6) pmagplotlib.draw_figs(AZD) mpars = pmag.domean( araiblock[1], start, end, 'DE-BFL') if verbose: print( 'pTRM direction= ', '%7.1f' % (mpars['specimen_dec']), ' %7.1f' % (mpars['specimen_inc']), ' MAD:', '%7.1f' % (mpars['specimen_mad'])) if AniSpec != "": CpTRM = pmag.Dir_anis_corr([ mpars['specimen_dec'], mpars['specimen_inc'] ], AniSpec) AniSpecRec = pmag.doaniscorr( PmagSpecRec, AniSpec) if verbose: print( 'Anisotropy corrected TRM direction= ', '%7.1f' % (CpTRM[0]), ' %7.1f' % (CpTRM[1])) print( 'Anisotropy corrected intensity= ', float( AniSpecRec['specimen_int']) * 1e6) else: print('error on specimen ', s) except: pass if verbose and found == 0: print(' None found :( ') if spc != "": if BEG != "": pars, errcode = pmag.PintPars(datablock, araiblock, zijdblock, BEG, END, accept) pars['measurement_step_unit'] = "K" pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars["specimen_b"] pars["er_specimen_name"] = s pars['specimen_grade'] = '' # ungraded pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars) if verbose: pmagplotlib.draw_figs(AZD) if len(trmblock) > 2: if inlt == 0: inlt = 1 blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append(float(trec['treatment_dc_field'])) TRMs.append( float(trec['measurement_magn_moment'])) # calculate best fit parameters through TRM acquisition data, and get new banc NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0) # Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) # predicted NRM for this field npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars['xopt'][1]) files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt pmagplotlib.save_plots(AZD, files, dpi=dpi) sys.exit() if verbose: ans = 'b' while ans != "": print(""" s[a]ve plot, set [b]ounds for calculation, [d]elete current interpretation, [p]revious, [s]ample, [q]uit: """) ans = input('Return for next specimen \n') if ans == "": specimen += 1 if ans == "d": save_redo(PriorRecs, inspec) CurrRec = [] pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, s, units[0]) if verbose: pmagplotlib.draw_figs(AZD) if ans == 'a': files = {} for key in AZD.keys(): files[key] = "LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name'] + \ '_SA:_' + \ PmagSpecRec['er_sample_name'] + \ '_SP:_'+s+'_CO:_s_TY:_'+key+fmt pmagplotlib.save_plots(AZD, files) ans = "" if ans == 'q': print("Good bye") sys.exit() if ans == 'p': specimen = specimen - 1 backup = 1 ans = "" if ans == 's': keepon = 1 spec = input( 'Enter desired specimen name (or first part there of): ' ) while keepon == 1: try: specimen = sids.index(spec) keepon = 0 except: tmplist = [] for qq in range(len(sids)): if spec in sids[qq]: tmplist.append(sids[qq]) print(specimen, " not found, but this was: ") print(tmplist) spec = input('Select one or try again\n ') ans = "" if ans == 'b': if end == 0 or end >= len(zijdblock): end = len(zijdblock) - 1 GoOn = 0 while GoOn == 0: answer = input( 'Enter index of first point for calculation: [' + str(start) + '] ') try: start = int(answer) answer = input( 'Enter index of last point for calculation: [' + str(end) + '] ') end = int(answer) if start >= 0 and start < len( zijdblock ) - 2 and end > 0 and end < len( zijdblock) or start >= end: GoOn = 1 else: print("Bad endpoints - try again! ") start, end = 0, len(zijdblock) except ValueError: print("Bad endpoints - try again! ") start, end = 0, len(zijdblock) s = sids[specimen] pars, errcode = pmag.PintPars( datablock, araiblock, zijdblock, start, end, accept) pars['measurement_step_unit'] = "K" pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars[ "specimen_b"] pars["er_specimen_name"] = s pars, kill = pmag.scoreit(pars, PmagSpecRec, accept, '', 0) PmagSpecRec['specimen_scat'] = pars[ 'specimen_scat'] PmagSpecRec['specimen_frac'] = '%5.3f' % ( pars['specimen_frac']) PmagSpecRec['specimen_gmax'] = '%5.3f' % ( pars['specimen_gmax']) PmagSpecRec["measurement_step_min"] = '%8.3e' % ( pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"] = '%8.3e' % ( pars["measurement_step_max"]) PmagSpecRec["measurement_step_unit"] = "K" PmagSpecRec["specimen_int_n"] = '%i' % ( pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % ( pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"] = '%9.4e ' % ( pars["specimen_int"]) PmagSpecRec["specimen_b"] = '%5.3f ' % ( pars["specimen_b"]) PmagSpecRec["specimen_q"] = '%5.1f ' % ( pars["specimen_q"]) PmagSpecRec["specimen_f"] = '%5.3f ' % ( pars["specimen_f"]) PmagSpecRec["specimen_fvds"] = '%5.3f' % ( pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"] = '%5.3f' % ( pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"] = '%7.1f' % ( pars["specimen_int_mad"]) PmagSpecRec["specimen_Z"] = '%7.1f' % ( pars["specimen_Z"]) PmagSpecRec["specimen_gamma"] = '%7.1f' % ( pars["specimen_gamma"]) PmagSpecRec["specimen_grade"] = pars[ "specimen_grade"] if pars["method_codes"] != "": tmpcodes = pars["method_codes"].split(":") for t in tmpcodes: if t.strip() not in methcodes: methcodes.append(t.strip()) PmagSpecRec["specimen_dec"] = '%7.1f' % ( pars["specimen_dec"]) PmagSpecRec["specimen_inc"] = '%7.1f' % ( pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"] = '-1' PmagSpecRec["specimen_direction_type"] = 'l' # this is redundant, but helpful - won't be imported PmagSpecRec["direction_type"] = 'l' PmagSpecRec["specimen_int_dang"] = '%7.1f ' % ( pars["specimen_int_dang"]) PmagSpecRec["specimen_drats"] = '%7.1f ' % ( pars["specimen_drats"]) PmagSpecRec["specimen_drat"] = '%7.1f ' % ( pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % ( pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"] = '%6.4f ' % ( pars["specimen_rsc"]) PmagSpecRec["specimen_md"] = '%i ' % (int( pars["specimen_md"])) if PmagSpecRec["specimen_md"] == '-1': PmagSpecRec["specimen_md"] = "" PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % ( pars["specimen_b_sigma"]) if "IE-TT" not in methcodes: methcodes.append("IE-TT") methods = "" for meth in methcodes: methods = methods + meth + ":" PmagSpecRec["magic_method_codes"] = methods[:-1] PmagSpecRec["specimen_description"] = comment PmagSpecRec[ "magic_software_packages"] = version_num pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, s, units[0]) pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars) if verbose: pmagplotlib.draw_figs(AZD) if len(trmblock) > 2: blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append(float( trec['treatment_dc_field'])) TRMs.append( float(trec['measurement_magn_moment'])) # calculate best fit parameters through TRM acquisition data, and get new banc NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0) Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) # predicted NRM for this field npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars['xopt'][1]) Mp.append(npred) pmagplotlib.plot_trm( AZD['TRM'], Bs, TRMs, Bp, Mp, NLpars, trec['magic_experiment_name']) if verbose: print( 'Non-linear TRM corrected intensity= ', float(NLpars['banc']) * 1e6) if verbose: pmagplotlib.draw_figs(AZD) pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars[ "specimen_b"] pars, kill = pmag.scoreit(pars, PmagSpecRec, accept, '', verbose) saveit = input( "Save this interpretation? [y]/n \n") if saveit != 'n': # put back an interpretation PriorRecs.append(PmagSpecRec) specimen += 1 save_redo(PriorRecs, inspec) ans = "" elif plots == 1: specimen += 1 if fmt != ".pmag": files = {} for key in AZD.keys(): files[key] = "LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_' + \ PmagSpecRec['er_sample_name'] + \ '_SP:_'+s+'_CO:_s_TY:_'+key+'_'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['deremag'] = 'DeReMag Plot' titles['zijd'] = 'Zijderveld Plot' titles['arai'] = 'Arai Plot' AZD = pmagplotlib.add_borders( AZD, titles, black, purple) pmagplotlib.save_plots(AZD, files, dpi=dpi) # pmagplotlib.combineFigs(s,files,3) else: # save in pmag format script = "grep " + s + " output.mag | thellier -mfsi" script = script + ' %8.4e' % (field) min = '%i' % ((pars["measurement_step_min"] - 273)) Max = '%i' % ((pars["measurement_step_max"] - 273)) script = script + " " + min + " " + Max script = script + " |plotxy;cat mypost >>thellier.ps\n" pltf.write(script) pmag.domagicmag(outf, MeasRecs) if len(CurrRec) > 0: for rec in CurrRec: PriorRecs.append(rec) CurrRec = [] if plots != 1 and verbose: ans = input(" Save last plot? 1/[0] ") if ans == "1": if fmt != ".pmag": files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt pmagplotlib.save_plots(AZD, files, dpi=dpi) else: print("\n Good bye\n") sys.exit() if len(CurrRec) > 0: PriorRecs.append(CurrRec) # put back an interpretation if len(PriorRecs) > 0: save_redo(PriorRecs, inspec) print('Updated interpretations saved in ', inspec) if verbose: print("Good bye")
def main(): """ NAME microwave_magic.py DESCRIPTION plots microwave paleointensity data, allowing interactive setting of bounds. Saves and reads interpretations from a pmag_specimen formatted table, default: microwave_specimens.txt SYNTAX microwave_magic.py [command line options] OPTIONS -h prints help message and quits -f MEAS, set magic_measurements input file -fsp PRIOR, set pmag_specimen prior interpretations file -fcr CRIT, set criteria file for grading. -fmt [svg,png,jpg], format for images - default is svg -sav, saves plots with out review (default format) -spc SPEC, plots single specimen SPEC, saves plot with specified format with optional -b bounds adn quits -b BEG END: sets bounds for calculation BEG: starting step for slope calculation END: ending step for slope calculation DEFAULTS MEAS: magic_measurements.txt CRIT: NONE PRIOR: microwave_specimens.txt OUTPUT figures: ALL: numbers refer to temperature steps in command line window 1) Arai plot: closed circles are zero-field first/infield open circles are infield first/zero-field triangles are pTRM checks squares are pTRM tail checks VDS is vector difference sum diamonds are bounds for interpretation 2) Zijderveld plot: closed (open) symbols are X-Y (X-Z) planes X rotated to NRM direction 3) (De/Re)Magnetization diagram: circles are NRM remaining squares are pTRM gained command line window: list is: temperature step numbers, power (J), Dec, Inc, Int (units of magic_measuements) list of possible commands: type letter followed by return to select option saving of plots creates .svg format files with specimen_name, plot type as name """ # # initializations # meas_file, critout, inspec = "magic_measurements.txt", "", "microwave_specimens.txt" inlt = 0 version_num = pmag.get_version() Tinit, DCZ, field, first_save = 0, 0, -1, 1 user, comment = "", '' ans, specimen, recnum, start, end = 0, 0, 0, 0, 0 plots, pmag_out, samp_file, style = 0, "", "", "svg" fmt = '.' + style # # default acceptance criteria # accept_keys = [ 'specimen_int_ptrm_n', 'specimen_md', 'specimen_fvds', 'specimen_b_beta', 'specimen_dang', 'specimen_drats', 'specimen_Z' ] accept = {} accept['specimen_int_ptrm_n'] = 2 accept['specimen_md'] = 10 accept['specimen_fvds'] = 0.35 accept['specimen_b_beta'] = .1 accept['specimen_int_mad'] = 7 accept['specimen_dang'] = 10 accept['specimen_drats'] = 10 accept['specimen_Z'] = 10 # # parse command line options # spc, BEG, END = "", "", "" if '-h' in sys.argv: print main.__doc__ sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') meas_file = sys.argv[ind + 1] if '-fsp' in sys.argv: ind = sys.argv.index('-fsp') inspec = sys.argv[ind + 1] if '-fcr' in sys.argv: ind = sys.argv.index('-fcr') critout = sys.argv[ind + 1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = '.' + sys.argv[ind + 1] if '-spc' in sys.argv: ind = sys.argv.index('-spc') spc = sys.argv[ind + 1] if '-b' in sys.argv: ind = sys.argv.index('-b') BEG = int(sys.argv[ind + 1]) END = int(sys.argv[ind + 2]) if critout != "": crit_data, file_type = pmag.magic_read(critout) if pmagplotlib.verbose: print "Acceptance criteria read in from ", critout accept = {} accept['specimen_int_ptrm_n'] = 2.0 for critrec in crit_data: if critrec["pmag_criteria_code"] == "IE-SPEC": for key in accept_keys: if key not in critrec.keys(): accept[key] = -1 else: accept[key] = float(critrec[key]) try: open(inspec, 'rU') PriorRecs, file_type = pmag.magic_read(inspec) if file_type != 'pmag_specimens': print file_type print file_type, inspec, " is not a valid pmag_specimens file " sys.exit() for rec in PriorRecs: if 'magic_software_packages' not in rec.keys(): rec['magic_software_packages'] = "" except IOError: PriorRecs = [] if pmagplotlib.verbose: print "starting new specimen interpretation file: ", inspec meas_data, file_type = pmag.magic_read(meas_file) if file_type != 'magic_measurements': print file_type print file_type, "This is not a valid magic_measurements file " sys.exit() backup = 0 # define figure numbers for arai, zijderveld and # de-,re-magization diagrams AZD = {} AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4 pmagplotlib.plot_init(AZD['arai'], 4, 4) pmagplotlib.plot_init(AZD['zijd'], 4, 4) pmagplotlib.plot_init(AZD['deremag'], 4, 4) pmagplotlib.plot_init(AZD['eqarea'], 4, 4) # # # # get list of unique specimen names # CurrRec = [] sids = pmag.get_specs(meas_data) # get plots for specimen s - default is just to step through arai diagrams # if spc != "": specimen = sids.index(spc) while specimen < len(sids): methcodes = [] if pmagplotlib.verbose and spc != "": print sids[specimen], specimen + 1, 'of ', len(sids) MeasRecs = [] s = sids[specimen] datablock, trmblock = [], [] PmagSpecRec = {} PmagSpecRec["er_analyst_mail_names"] = user PmagSpecRec["specimen_correction"] = 'u' # # find the data from the meas_data file for this specimen # for rec in meas_data: if rec["er_specimen_name"] == s: MeasRecs.append(rec) methods = rec["magic_method_codes"].split(":") meths = [] for meth in methods: meths.append(meth.strip()) # take off annoying spaces methods = "" for meth in meths: if meth.strip() not in methcodes and "LP-" in meth: methcodes.append(meth.strip()) methods = methods + meth + ":" methods = methods[:-1] rec["magic_method_codes"] = methods if "LP-PI-M" in meths: datablock.append(rec) if "LP-MRM" in meths: trmblock.append(rec) if len(trmblock) > 2 and inspec != "": if Tinit == 0: Tinit = 1 AZD['MRM'] = 4 pmagplotlib.plot_init(AZD['MRM'], 4, 4) elif Tinit == 1: pmagplotlib.clearFIG(AZD['MRM']) if len(datablock) < 4: if backup == 0: specimen += 1 if pmagplotlib.verbose: print 'skipping specimen - moving forward ', s else: specimen -= 1 if pmagplotlib.verbose: print 'skipping specimen - moving backward ', s # # collect info for the PmagSpecRec dictionary # else: rec = datablock[0] PmagSpecRec["er_citation_names"] = "This study" PmagSpecRec["er_specimen_name"] = s PmagSpecRec["er_sample_name"] = rec["er_sample_name"] PmagSpecRec["er_site_name"] = rec["er_site_name"] PmagSpecRec["er_location_name"] = rec["er_location_name"] if "magic_instrument_codes" not in rec.keys(): rec["magic_instrument_codes"] = "" PmagSpecRec["magic_instrument_codes"] = rec[ "magic_instrument_codes"] PmagSpecRec["measurement_step_unit"] = "J" if "magic_experiment_name" not in rec.keys(): rec["magic_experiment_name"] = "" else: PmagSpecRec["magic_experiment_names"] = rec[ "magic_experiment_name"] meths = rec["magic_method_codes"].split(':') # sort data into types if "LP-PI-M-D" in meths: # this is a double heating experiment exp_type = "LP-PI-M-D" elif "LP-PI-M-S" in meths: exp_type = "LP-PI-M-S" else: print "experiment type not supported yet " break araiblock, field = pmag.sortmwarai(datablock, exp_type) first_Z = araiblock[0] first_I = araiblock[1] GammaChecks = araiblock[-3] ThetaChecks = araiblock[-2] DeltaChecks = araiblock[-1] if len(first_Z) < 3: if backup == 0: specimen += 1 if pmagplotlib.verbose: print 'skipping specimen - moving forward ', s else: specimen -= 1 if pmagplotlib.verbose: print 'skipping specimen - moving backward ', s else: backup = 0 zijdblock, units = pmag.find_dmag_rec(s, meas_data) if exp_type == "LP-PI-M-D": recnum = 0 print "ZStep Watts Dec Inc Int" for plotrec in zijdblock: if pmagplotlib.verbose: print '%i %i %7.1f %7.1f %8.3e ' % ( recnum, plotrec[0], plotrec[1], plotrec[2], plotrec[3]) recnum += 1 recnum = 1 if GammaChecks != "": print "IStep Watts Gamma" for gamma in GammaChecks: if pmagplotlib.verbose: print '%i %i %7.1f ' % (recnum, gamma[0], gamma[1]) recnum += 1 if exp_type == "LP-PI-M-S": if pmagplotlib.verbose: print "IStep Watts Theta" kk = 0 for theta in ThetaChecks: kk += 1 print '%i %i %7.1f ' % (kk, theta[0], theta[1]) if pmagplotlib.verbose: print "Watts Delta" for delta in DeltaChecks: print '%i %7.1f ' % (delta[0], delta[1]) pmagplotlib.plotAZ(AZD, araiblock, zijdblock, s, units[0]) if inspec != "": if pmagplotlib.verbose: print 'Looking up saved interpretation....' found = 0 for k in range(len(PriorRecs)): try: if PriorRecs[k]["er_specimen_name"] == s: found = 1 CurrRec.append(PriorRecs[k]) for j in range(len(araiblock[0])): if float(araiblock[0][j][0]) == float( PriorRecs[k] ["measurement_step_min"]): start = j if float(araiblock[0][j][0]) == float( PriorRecs[k] ["measurement_step_max"]): end = j pars, errcode = pmag.PintPars( araiblock, zijdblock, start, end) pars['measurement_step_unit'] = "J" del PriorRecs[ k] # put in CurrRec, take out of PriorRecs if errcode != 1: pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars[ "specimen_b"] pars["er_specimen_name"] = s if pmagplotlib.verbose: print 'Saved interpretation: ' pars = pmag.scoreit( pars, PmagSpecRec, accept, '', 0) pmagplotlib.plotB(AZD, araiblock, zijdblock, pars) if len(trmblock) > 2: blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append( float( trec['treatment_dc_field']) ) TRMs.append( float(trec[ 'measurement_magn_moment']) ) NLpars = nlt.NLtrm( Bs, TRMs, best, blab, 0 ) # calculate best fit parameters through TRM acquisition data, and get new banc Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) npred = nlt.TRM( Bp[-1], NLpars['xopt'][0], NLpars['xopt'][1] ) # predicted NRM for this field Mp.append(npred) pmagplotlib.plotTRM( AZD['MRM'], Bs, TRMs, Bp, Mp, NLpars, trec['magic_experiment_name']) print npred print 'Banc= ', float( NLpars['banc']) * 1e6 if pmagplotlib.verbose: print 'Banc= ', float( NLpars['banc']) * 1e6 pmagplotlib.drawFIGS(AZD) else: print 'error on specimen ', s except: pass if pmagplotlib.verbose and found == 0: print ' None found :( ' if spc != "": if BEG != "": pars, errcode = pmag.PintPars(araiblock, zijdblock, BEG, END) pars['measurement_step_unit'] = "J" pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars["specimen_b"] pars["er_specimen_name"] = s pars['specimen_grade'] = '' # ungraded pmagplotlib.plotB(AZD, araiblock, zijdblock, pars) if len(trmblock) > 2: if inlt == 0: donlt() inlt = 1 blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append(float(trec['treatment_dc_field'])) TRMs.append( float(trec['measurement_magn_moment'])) NLpars = nlt.NLtrm( Bs, TRMs, best, blab, 0 ) # calculate best fit parameters through TRM acquisition data, and get new banc # Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) npred = nlt.TRM( Bp[-1], NLpars['xopt'][0], NLpars['xopt'] [1]) # predicted NRM for this field files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt pmagplotlib.saveP(AZD, files) sys.exit() if plots == 0: ans = 'b' while ans != "": print """ s[a]ve plot, set [b]ounds for calculation, [d]elete current interpretation, [p]revious, [s]ample, [q]uit: """ ans = raw_input('Return for next specimen \n') if ans == "": specimen += 1 if ans == "d": save_redo(PriorRecs, inspec) CurrRec = [] pmagplotlib.plotAZ(AZD, araiblock, zijdblock, s, units[0]) pmagplotlib.drawFIGS(AZD) if ans == 'a': files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt pmagplotlib.saveP(AZD, files) ans = "" if ans == 'q': print "Good bye" sys.exit() if ans == 'p': specimen = specimen - 1 backup = 1 ans = "" if ans == 's': keepon = 1 spec = raw_input( 'Enter desired specimen name (or first part there of): ' ) while keepon == 1: try: specimen = sids.index(spec) keepon = 0 except: tmplist = [] for qq in range(len(sids)): if spec in sids[qq]: tmplist.append(sids[qq]) print specimen, " not found, but this was: " print tmplist spec = raw_input( 'Select one or try again\n ') ans = "" if ans == 'b': if end == 0 or end >= len(araiblock[0]): end = len(araiblock[0]) - 1 GoOn = 0 while GoOn == 0: print 'Enter index of first point for calculation: ', '[', start, ']' answer = raw_input('return to keep default ') if answer != "": start = int(answer) print 'Enter index of last point for calculation: ', '[', end, ']' answer = raw_input('return to keep default ') if answer != "": end = int(answer) if start >= 0 and start < len(araiblock[ 0]) - 2 and end > 0 and end < len( araiblock[0]) and start < end: GoOn = 1 else: print "Bad endpoints - try again! " start, end = 0, len(araiblock) s = sids[specimen] pars, errcode = pmag.PintPars( araiblock, zijdblock, start, end) pars['measurement_step_unit'] = "J" pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars[ "specimen_b"] pars["er_specimen_name"] = s pars = pmag.scoreit(pars, PmagSpecRec, accept, '', 0) PmagSpecRec["measurement_step_min"] = '%8.3e' % ( pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"] = '%8.3e' % ( pars["measurement_step_max"]) PmagSpecRec["measurement_step_unit"] = "J" PmagSpecRec["specimen_int_n"] = '%i' % ( pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % ( pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"] = '%8.3e ' % ( pars["specimen_int"]) PmagSpecRec["specimen_b"] = '%5.3f ' % ( pars["specimen_b"]) PmagSpecRec["specimen_q"] = '%5.1f ' % ( pars["specimen_q"]) PmagSpecRec["specimen_f"] = '%5.3f ' % ( pars["specimen_f"]) PmagSpecRec["specimen_fvds"] = '%5.3f' % ( pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"] = '%5.3f' % ( pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"] = '%7.1f' % ( pars["specimen_int_mad"]) PmagSpecRec["specimen_Z"] = '%7.1f' % ( pars["specimen_Z"]) if pars["method_codes"] != "": tmpcodes = pars["method_codes"].split(":") for t in tmpcodes: if t.strip() not in methcodes: methcodes.append(t.strip()) PmagSpecRec["specimen_dec"] = '%7.1f' % ( pars["specimen_dec"]) PmagSpecRec["specimen_inc"] = '%7.1f' % ( pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"] = '-1' PmagSpecRec["specimen_direction_type"] = 'l' PmagSpecRec[ "direction_type"] = 'l' # this is redudant, but helpful - won't be imported PmagSpecRec["specimen_dang"] = '%7.1f ' % ( pars["specimen_dang"]) PmagSpecRec["specimen_drats"] = '%7.1f ' % ( pars["specimen_drats"]) PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % ( pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"] = '%6.4f ' % ( pars["specimen_rsc"]) PmagSpecRec["specimen_md"] = '%i ' % (int( pars["specimen_md"])) if PmagSpecRec["specimen_md"] == '-1': PmagSpecRec["specimen_md"] = "" PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % ( pars["specimen_b_sigma"]) if "IE-TT" not in methcodes: methcodes.append("IE-TT") methods = "" for meth in methcodes: methods = methods + meth + ":" PmagSpecRec["magic_method_codes"] = methods[:-1] PmagSpecRec["specimen_description"] = comment PmagSpecRec[ "magic_software_packages"] = version_num pmagplotlib.plotAZ(AZD, araiblock, zijdblock, s, units[0]) pmagplotlib.plotB(AZD, araiblock, zijdblock, pars) if len(trmblock) > 2: blab = field best = pars["specimen_int"] Bs, TRMs = [], [] for trec in trmblock: Bs.append(float( trec['treatment_dc_field'])) TRMs.append( float(trec['measurement_magn_moment'])) NLpars = nlt.NLtrm( Bs, TRMs, best, blab, 0 ) # calculate best fit parameters through TRM acquisition data, and get new banc Mp, Bp = [], [] for k in range(int(max(Bs) * 1e6)): Bp.append(float(k) * 1e-6) npred = nlt.TRM( Bp[-1], NLpars['xopt'][0], NLpars['xopt'] [1]) # predicted NRM for this field Mp.append(npred) pmagplotlib.plotTRM( AZD['MRM'], Bs, TRMs, Bp, Mp, NLpars, trec['magic_experiment_name']) print 'Banc= ', float(NLpars['banc']) * 1e6 pmagplotlib.drawFIGS(AZD) pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars[ "specimen_b"] saveit = raw_input( "Save this interpretation? [y]/n \n") if saveit != 'n': specimen += 1 PriorRecs.append( PmagSpecRec) # put back an interpretation save_redo(PriorRecs, inspec) ans = "" else: specimen += 1 if fmt != ".pmag": basename = s + '_microwave' + fmt files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['deremag'] = 'DeReMag Plot' titles['zijd'] = 'Zijderveld Plot' titles['arai'] = 'Arai Plot' AZD = pmagplotlib.addBorders( AZD, titles, black, purple) pmagplotlib.saveP(AZD, files) # pmagplotlib.combineFigs(s,files,3) if len(CurrRec) > 0: for rec in CurrRec: PriorRecs.append(rec) CurrRec = [] if plots != 1: ans = raw_input(" Save last plot? 1/[0] ") if ans == "1": if fmt != ".pmag": files = {} for key in AZD.keys(): files[key] = s + '_' + key + fmt pmagplotlib.saveP(AZD, files) if len(CurrRec) > 0: PriorRecs.append(CurrRec) # put back an interpretation if len(PriorRecs) > 0: save_redo(PriorRecs, inspec) print 'Updated interpretations saved in ', inspec if pmagplotlib.verbose: print "Good bye"
def main(): """ NAME thellier_magic_redo.py DESCRIPTION Calculates paleointensity parameters for thellier-thellier type data using bounds stored in the "redo" file SYNTAX thellier_magic_redo [command line options] OPTIONS -h prints help message -usr USER: identify user, default is "" -fcr CRIT, set criteria for grading -f IN: specify input file, default is magic_measurements.txt -fre REDO: specify redo file, default is "thellier_redo" -F OUT: specify output file, default is thellier_specimens.txt -leg: attaches "Recalculated from original measurements; supercedes published results. " to comment field -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file PERC should be a percentage of original (say reduce to 90%) TYPE should be one of the following: EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) -ANI: perform anisotropy correction -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION -Fcr CRout: specify pmag_specimen format file for cooling rate corrected data -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt -Fac ACout: specify pmag_specimen format file for anisotropy corrected data default is AC_specimens.txt -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data default is NLT_specimens.txt -z use z component differenences for pTRM calculation INPUT a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade) """ dir_path = '.' critout = "" version_num = pmag.get_version() field, first_save = -1, 1 spec, recnum, start, end = 0, 0, 0, 0 crfrac = 0 NltRecs, PmagSpecs, AniSpecRecs, NltSpecRecs, CRSpecs = [], [], [], [], [] meas_file, pmag_file, mk_file = "magic_measurements.txt", "thellier_specimens.txt", "thellier_redo" anis_file = "rmag_anisotropy.txt" anisout, nltout = "AC_specimens.txt", "NLT_specimens.txt" crout = "CR_specimens.txt" nlt_file = "" samp_file = "" comment, user = "", "unknown" anis, nltrm = 0, 0 jackknife = 0 # maybe in future can do jackknife args = sys.argv Zdiff = 0 if '-WD' in args: ind = args.index('-WD') dir_path = args[ind + 1] if "-h" in args: print main.__doc__ sys.exit() if "-usr" in args: ind = args.index("-usr") user = sys.argv[ind + 1] if "-leg" in args: comment = "Recalculated from original measurements; supercedes published results. " cool = 0 if "-CR" in args: cool = 1 ind = args.index("-CR") crfrac = .01 * float(sys.argv[ind + 1]) crtype = 'DA-CR-' + sys.argv[ind + 2] if "-Fcr" in args: ind = args.index("-Fcr") crout = sys.argv[ind + 1] if "-f" in args: ind = args.index("-f") meas_file = sys.argv[ind + 1] if "-F" in args: ind = args.index("-F") pmag_file = sys.argv[ind + 1] if "-fre" in args: ind = args.index("-fre") mk_file = args[ind + 1] if "-fsa" in args: ind = args.index("-fsa") samp_file = dir_path + '/' + args[ind + 1] Samps, file_type = pmag.magic_read(samp_file) SampCRs = pmag.get_dictitem( Samps, 'cooling_rate_corr', '', 'F') # get samples cooling rate corrections cool = 1 if file_type != 'er_samples': print 'not a valid er_samples.txt file' sys.exit() # # if "-ANI" in args: anis = 1 ind = args.index("-ANI") if "-Fac" in args: ind = args.index("-Fac") anisout = args[ind + 1] if "-fan" in args: ind = args.index("-fan") anis_file = args[ind + 1] # if "-NLT" in args: if "-Fnl" in args: ind = args.index("-Fnl") nltout = args[ind + 1] if "-fnl" in args: ind = args.index("-fnl") nlt_file = args[ind + 1] if "-z" in args: Zdiff = 1 if '-fcr' in sys.argv: ind = args.index("-fcr") critout = sys.argv[ind + 1] # # start reading in data: # meas_file = dir_path + "/" + meas_file mk_file = dir_path + "/" + mk_file accept = pmag.default_criteria(1)[0] # set criteria to none if critout != "": critout = dir_path + "/" + critout crit_data, file_type = pmag.magic_read(critout) if file_type != 'pmag_criteria': print 'bad pmag_criteria file, using no acceptance criteria' print "Acceptance criteria read in from ", critout for critrec in crit_data: if 'sample_int_sigma_uT' in critrec.keys( ): # accommodate Shaar's new criterion critrec['sample_int_sigma'] = '%10.3e' % ( eval(critrec['sample_int_sigma_uT']) * 1e-6) for key in critrec.keys(): if key not in accept.keys() and critrec[key] != '': accept[key] = critrec[key] meas_data, file_type = pmag.magic_read(meas_file) if file_type != 'magic_measurements': print file_type print file_type, "This is not a valid magic_measurements file " sys.exit() try: mk_f = open(mk_file, 'rU') except: print "Bad redo file" sys.exit() mkspec = [] speclist = [] for line in mk_f.readlines(): tmp = line.split() mkspec.append(tmp) speclist.append(tmp[0]) if anis == 1: anis_file = dir_path + "/" + anis_file anis_data, file_type = pmag.magic_read(anis_file) if file_type != 'rmag_anisotropy': print file_type print file_type, "This is not a valid rmag_anisotropy file " sys.exit() if nlt_file == "": nlt_data = pmag.get_dictitem( meas_data, 'magic_method_codes', 'LP-TRM', 'has') # look for trm acquisition data in the meas_data file else: nlt_file = dir_path + "/" + nlt_file nlt_data, file_type = pmag.magic_read(nlt_file) if len(nlt_data) > 0: nltrm = 1 # # sort the specimen names and step through one by one # sids = pmag.get_specs(meas_data) # print 'Processing ', len(speclist), ' specimens - please wait ' while spec < len(speclist): s = speclist[spec] recnum = 0 datablock = [] PmagSpecRec = {} PmagSpecRec["er_analyst_mail_names"] = user PmagSpecRec["er_citation_names"] = "This study" PmagSpecRec["magic_software_packages"] = version_num methcodes, inst_code = [], "" # # find the data from the meas_data file for this specimen # datablock = pmag.get_dictitem(meas_data, 'er_specimen_name', s, 'T') datablock = pmag.get_dictitem( datablock, 'magic_method_codes', 'LP-PI-TRM', 'has') #pick out the thellier experiment data if len(datablock) > 0: for rec in datablock: if "magic_instrument_codes" not in rec.keys(): rec["magic_instrument_codes"] = "unknown" # # collect info for the PmagSpecRec dictionary # rec = datablock[0] PmagSpecRec["er_specimen_name"] = s PmagSpecRec["er_sample_name"] = rec["er_sample_name"] PmagSpecRec["er_site_name"] = rec["er_site_name"] PmagSpecRec["er_location_name"] = rec["er_location_name"] PmagSpecRec["measurement_step_unit"] = "K" PmagSpecRec["specimen_correction"] = 'u' if "er_expedition_name" in rec.keys(): PmagSpecRec["er_expedition_name"] = rec["er_expedition_name"] if "magic_instrument_codes" not in rec.keys(): PmagSpecRec["magic_instrument_codes"] = "unknown" else: PmagSpecRec["magic_instrument_codes"] = rec[ "magic_instrument_codes"] if "magic_experiment_name" not in rec.keys(): rec["magic_experiment_name"] = "" else: PmagSpecRec["magic_experiment_names"] = rec[ "magic_experiment_name"] meths = rec["magic_experiment_name"].split(":") for meth in meths: if meth.strip() not in methcodes and "LP-" in meth: methcodes.append(meth.strip()) # # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail # araiblock, field = pmag.sortarai(datablock, s, Zdiff) first_Z = araiblock[0] first_I = araiblock[1] ptrm_check = araiblock[2] ptrm_tail = araiblock[3] if len(first_I) < 3 or len(first_Z) < 4: spec += 1 print 'skipping specimen ', s else: # # get start, end # for redospec in mkspec: if redospec[0] == s: b, e = float(redospec[1]), float(redospec[2]) break if e > float(first_Z[-1][0]): e = float(first_Z[-1][0]) for recnum in range(len(first_Z)): if first_Z[recnum][0] == b: start = recnum if first_Z[recnum][0] == e: end = recnum nsteps = end - start if nsteps > 2: zijdblock, units = pmag.find_dmag_rec(s, meas_data) pars, errcode = pmag.PintPars(datablock, araiblock, zijdblock, start, end, accept) if 'specimen_scat' in pars.keys(): PmagSpecRec['specimen_scat'] = pars['specimen_scat'] if 'specimen_frac' in pars.keys(): PmagSpecRec['specimen_frac'] = '%5.3f' % ( pars['specimen_frac']) if 'specimen_gmax' in pars.keys(): PmagSpecRec['specimen_gmax'] = '%5.3f' % ( pars['specimen_gmax']) pars['measurement_step_unit'] = units pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars["specimen_b"] PmagSpecRec["measurement_step_min"] = '%8.3e' % ( pars["measurement_step_min"]) PmagSpecRec["measurement_step_max"] = '%8.3e' % ( pars["measurement_step_max"]) PmagSpecRec["specimen_int_n"] = '%i' % ( pars["specimen_int_n"]) PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % ( pars["specimen_lab_field_dc"]) PmagSpecRec["specimen_int"] = '%9.4e ' % ( pars["specimen_int"]) PmagSpecRec["specimen_b"] = '%5.3f ' % (pars["specimen_b"]) PmagSpecRec["specimen_q"] = '%5.1f ' % (pars["specimen_q"]) PmagSpecRec["specimen_f"] = '%5.3f ' % (pars["specimen_f"]) PmagSpecRec["specimen_fvds"] = '%5.3f' % ( pars["specimen_fvds"]) PmagSpecRec["specimen_b_beta"] = '%5.3f' % ( pars["specimen_b_beta"]) PmagSpecRec["specimen_int_mad"] = '%7.1f' % ( pars["specimen_int_mad"]) PmagSpecRec["specimen_Z"] = '%7.1f' % (pars["specimen_Z"]) PmagSpecRec["specimen_gamma"] = '%7.1f' % ( pars["specimen_gamma"]) if pars["method_codes"] != "" and pars[ "method_codes"] not in methcodes: methcodes.append(pars["method_codes"]) PmagSpecRec["specimen_dec"] = '%7.1f' % ( pars["specimen_dec"]) PmagSpecRec["specimen_inc"] = '%7.1f' % ( pars["specimen_inc"]) PmagSpecRec["specimen_tilt_correction"] = '-1' PmagSpecRec["specimen_direction_type"] = 'l' PmagSpecRec[ "direction_type"] = 'l' # this is redudant, but helpful - won't be imported PmagSpecRec["specimen_dang"] = '%7.1f ' % ( pars["specimen_dang"]) PmagSpecRec["specimen_drats"] = '%7.1f ' % ( pars["specimen_drats"]) PmagSpecRec["specimen_drat"] = '%7.1f ' % ( pars["specimen_drat"]) PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % ( pars["specimen_int_ptrm_n"]) PmagSpecRec["specimen_rsc"] = '%6.4f ' % ( pars["specimen_rsc"]) PmagSpecRec["specimen_md"] = '%i ' % (int( pars["specimen_md"])) if PmagSpecRec["specimen_md"] == '-1': PmagSpecRec["specimen_md"] = "" PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % ( pars["specimen_b_sigma"]) if "IE-TT" not in methcodes: methcodes.append("IE-TT") methods = "" for meth in methcodes: methods = methods + meth + ":" PmagSpecRec["magic_method_codes"] = methods.strip(':') PmagSpecRec["magic_software_packages"] = version_num PmagSpecRec["specimen_description"] = comment if critout != "": kill = pmag.grade(PmagSpecRec, accept, 'specimen_int') if len(kill) > 0: Grade = 'F' # fails else: Grade = 'A' # passes PmagSpecRec["specimen_grade"] = Grade else: PmagSpecRec["specimen_grade"] = "" # not graded if nltrm == 0 and anis == 0 and cool != 0: # apply cooling rate correction SCR = pmag.get_dictitem( SampCRs, 'er_sample_name', PmagSpecRec['er_sample_name'], 'T') # get this samples, cooling rate correction CrSpecRec = pmag.cooling_rate(PmagSpecRec, SCR, crfrac, crtype) if CrSpecRec['er_specimen_name'] != 'none': CrSpecs.append(CrSpecRec) PmagSpecs.append(PmagSpecRec) NltSpecRec = "" # # check on non-linear TRM correction # if nltrm == 1: # # find the data from the nlt_data list for this specimen # TRMs, Bs = [], [] NltSpecRec = "" NltRecs = pmag.get_dictitem( nlt_data, 'er_specimen_name', PmagSpecRec['er_specimen_name'], 'has' ) # fish out all the NLT data for this specimen if len(NltRecs) > 2: for NltRec in NltRecs: Bs.append(float(NltRec['treatment_dc_field'])) TRMs.append( float(NltRec['measurement_magn_moment'])) NLTpars = nlt.NLtrm( Bs, TRMs, float(PmagSpecRec['specimen_int']), float(PmagSpecRec['specimen_lab_field_dc']), 0) if NLTpars['banc'] > 0: NltSpecRec = {} for key in PmagSpecRec.keys(): NltSpecRec[key] = PmagSpecRec[key] NltSpecRec['specimen_int'] = '%9.4e' % ( NLTpars['banc']) NltSpecRec['magic_method_codes'] = PmagSpecRec[ "magic_method_codes"] + ":DA-NL" NltSpecRec["specimen_correction"] = 'c' NltSpecRec['specimen_grade'] = PmagSpecRec[ 'specimen_grade'] NltSpecRec[ "magic_software_packages"] = version_num print NltSpecRec[ 'er_specimen_name'], ' Banc= ', float( NLTpars['banc']) * 1e6 if anis == 0 and cool != 0: SCR = pmag.get_dictitem( SampCRs, 'er_sample_name', NltSpecRec['er_sample_name'], 'T' ) # get this samples, cooling rate correction CrSpecRec = pmag.cooling_rate( NltSpecRec, SCR, crfrac, crtype) if CrSpecRec['er_specimen_name'] != 'none': CrSpecs.append(CrSpecRec) NltSpecRecs.append(NltSpecRec) # # check on anisotropy correction if anis == 1: if NltSpecRec != "": Spc = NltSpecRec else: # find uncorrected data Spc = PmagSpecRec AniSpecs = pmag.get_dictitem( anis_data, 'er_specimen_name', PmagSpecRec['er_specimen_name'], 'T') if len(AniSpecs) > 0: AniSpec = AniSpecs[0] AniSpecRec = pmag.doaniscorr(Spc, AniSpec) AniSpecRec['specimen_grade'] = PmagSpecRec[ 'specimen_grade'] AniSpecRec[ "magic_instrument_codes"] = PmagSpecRec[ 'magic_instrument_codes'] AniSpecRec["specimen_correction"] = 'c' AniSpecRec[ "magic_software_packages"] = version_num if cool != 0: SCR = pmag.get_dictitem( SampCRs, 'er_sample_name', AniSpecRec['er_sample_name'], 'T' ) # get this samples, cooling rate correction CrSpecRec = pmag.cooling_rate( AniSpecRec, SCR, crfrac, crtype) if CrSpecRec['er_specimen_name'] != 'none': CrSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) elif anis == 1: AniSpecs = pmag.get_dictitem( anis_data, 'er_specimen_name', PmagSpecRec['er_specimen_name'], 'T') if len(AniSpecs) > 0: AniSpec = AniSpecs[0] AniSpecRec = pmag.doaniscorr(PmagSpecRec, AniSpec) AniSpecRec['specimen_grade'] = PmagSpecRec[ 'specimen_grade'] AniSpecRec["magic_instrument_codes"] = PmagSpecRec[ "magic_instrument_codes"] AniSpecRec["specimen_correction"] = 'c' AniSpecRec["magic_software_packages"] = version_num if crfrac != 0: CrSpecRec = {} for key in AniSpecRec.keys(): CrSpecRec[key] = AniSpecRec[key] inten = frac * float(CrSpecRec['specimen_int']) CrSpecRec["specimen_int"] = '%9.4e ' % ( inten ) # adjust specimen intensity by cooling rate correction CrSpecRec['magic_method_codes'] = CrSpecRec[ 'magic_method_codes'] + ':DA-CR-' + crtype CRSpecs.append(CrSpecRec) AniSpecRecs.append(AniSpecRec) spec += 1 else: print "skipping ", s spec += 1 pmag_file = dir_path + '/' + pmag_file pmag.magic_write(pmag_file, PmagSpecs, 'pmag_specimens') print 'uncorrected thellier data saved in: ', pmag_file if anis == 1 and len(AniSpecRecs) > 0: anisout = dir_path + '/' + anisout pmag.magic_write(anisout, AniSpecRecs, 'pmag_specimens') print 'anisotropy corrected data saved in: ', anisout if nltrm == 1 and len(NltSpecRecs) > 0: nltout = dir_path + '/' + nltout pmag.magic_write(nltout, NltSpecRecs, 'pmag_specimens') print 'non-linear TRM corrected data saved in: ', nltout if crfrac != 0: crout = dir_path + '/' + crout pmag.magic_write(crout, CRSpecs, 'pmag_specimens') print 'cooling rate corrected data saved in: ', crout
def main(): """ NAME thellier_magic.py DESCRIPTION plots Thellier-Thellier data in version 3.0 format Reads saved interpretations from a specimen formatted table, default: specimens.txt SYNTAX thellier_magic.py [command line options] OPTIONS -h prints help message and quits -f MEAS, set measurements input file, default is 'measurements.txt' -fsp PRIOR, set specimens.txt prior interpretations file, default is 'specimens.txt' -fcr CRIT, set criteria file for grading. # not yet implemented -fmt [svg,png,jpg], format for images - default is svg -sav, saves plots with out review (in format specified by -fmt key or default) -spc SPEC, plots single specimen SPEC, saves plot with specified format with optional -b bounds and quits -b BEG END: sets bounds for calculation BEG: starting step number for slope calculation END: ending step number for slope calculation -z use only z component difference for pTRM calculation OUTPUT figures: ALL: numbers refer to temperature steps in command line window 1) Arai plot: closed circles are zero-field first/infield open circles are infield first/zero-field triangles are pTRM checks squares are pTRM tail checks VDS is vector difference sum diamonds are bounds for interpretation 2) Zijderveld plot: closed (open) symbols are X-Y (X-Z) planes X rotated to NRM direction 3) (De/Re)Magnetization diagram: circles are NRM remaining squares are pTRM gained 4) equal area projections: green triangles are pTRM gained direction red (purple) circles are lower(upper) hemisphere of ZI step directions blue (cyan) squares are lower(upper) hemisphere IZ step directions 5) Optional: TRM acquisition 6) Optional: TDS normalization command line window: list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of measuements) list of possible commands: type letter followed by return to select option saving of plots creates image files with specimen, plot type as name """ # # initializations # version_num = pmag.get_version() verbose = pmagplotlib.verbose # # default acceptance criteria # accept = pmag.default_criteria(0)[0] # set the default criteria # # parse command line options # plots, fmt, Zdiff = 0, 'svg', 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd()) meas_file = pmag.get_named_arg_from_sys("-f", default_val="measurements.txt") spec_file = pmag.get_named_arg_from_sys("-fsp", default_val="specimens.txt") crit_file = pmag.get_named_arg_from_sys("-fcr", default_val="criteria.txt") spec_file = os.path.join(dir_path, spec_file) meas_file = os.path.join(dir_path, meas_file) crit_file = os.path.join(dir_path, crit_file) fmt = pmag.get_named_arg_from_sys("-fmt", "svg") if '-sav' in sys.argv: plots, verbose = 1, 0 if '-z' in sys.argv: Zdiff = 1 specimen = pmag.get_named_arg_from_sys("-spc", default_val="") if '-b' in sys.argv: ind = sys.argv.index('-b') start = int(sys.argv[ind + 1]) end = int(sys.argv[ind + 2]) else: start, end = "", "" fnames = { 'measurements': meas_file, 'specimens': spec_file, 'criteria': crit_file } contribution = nb.Contribution( dir_path, custom_filenames=fnames, read_tables=['measurements', 'specimens', 'criteria']) # # import prior interpretations from specimen file # specimen_cols = [ 'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s', 'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma', 'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1', 'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95', 'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements', 'dir_tilt_correction', 'experiments', 'geologic_classes', 'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment', 'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma', 'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma', 'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q', 'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max', 'meas_step_min', 'meas_step_unit', 'method_codes', 'sample', 'software_packages', 'specimen' ] if 'specimens' in contribution.tables: spec_container = contribution.tables['specimens'] prior_spec_data = spec_container.get_records_for_code( 'LP-PI-TRM', strict_match=False) # look up all prior intensity interpretations else: spec_container, prior_spec_data = None, [] backup = 0 # Mkeys = ['magn_moment', 'magn_volume', 'magn_mass'] # # create measurement dataframe # meas_container = contribution.tables['measurements'] meas_data = meas_container.df # meas_data['method_codes'] = meas_data['method_codes'].str.replace( " ", "") # get rid of nasty spaces meas_data = meas_data[meas_data['method_codes'].str.contains( 'LP-PI-TRM|LP-TRM|LP-TRM-TD') == True] # fish out zero field steps for plotting intensity_types = [ col_name for col_name in meas_data.columns if col_name in Mkeys ] int_key = intensity_types[ 0] # plot first intensity method found - normalized to initial value anyway - doesn't matter which used meas_data = meas_data[meas_data[int_key].notnull( )] # get all the non-null intensity records of the same type if 'flag' not in meas_data.columns: meas_data['flag'] = 'g' # set the default flag to good meas_data = meas_data[meas_data['flag'].str.contains('g') == True] # only the 'good' measurements thel_data = meas_data[meas_data['method_codes'].str.contains('LP-PI-TRM') == True] # get all the Thellier data trm_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM') == True] # get all the TRM acquisition data td_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM-TD') == True] # get all the TD data anis_data = meas_data[meas_data['method_codes'].str.contains('LP-AN') == True] # get all the anisotropy data # # get list of unique specimen names from measurement data # specimen_names = meas_data.specimen.unique( ) # this is a Series of all the specimen names specimen_names = specimen_names.tolist() # turns it into a list specimen_names.sort() # sorts by specimen name # # set up new DataFrame for this sessions specimen interpretations # spec_container = nb.MagicDataFrame(dtype='specimens', columns=specimen_cols) current_spec_data = spec_container.df # this is for interpretations from this session if specimen == "": # do all specimens k = 0 else: k = specimen_names.index(specimen) # just do this one # define figure numbers for arai, zijderveld and # de-,re-magnetization diagrams AZD = {} AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4 pmagplotlib.plot_init(AZD['arai'], 5, 5) pmagplotlib.plot_init(AZD['zijd'], 5, 5) pmagplotlib.plot_init(AZD['deremag'], 5, 5) pmagplotlib.plot_init(AZD['eqarea'], 5, 5) if len(trm_data) > 0: AZD['TRM'] = 5 pmagplotlib.plot_init(AZD['TRM'], 5, 5) if len(td_data) > 0: AZD['TDS'] = 6 pmagplotlib.plot_init(AZD['TDS'], 5, 5) # while k < len(specimen_names): this_specimen = specimen_names[ k] # set the current specimen for plotting if verbose and this_specimen != "": print(this_specimen, k + 1, 'out of ', len(specimen_names)) # # set up datablocks # thelblock = thel_data[thel_data['specimen'].str.contains(this_specimen) == True] # fish out this specimen trmblock = trm_data[trm_data['specimen'].str.contains(this_specimen) == True] # fish out this specimen tdsrecs = td_data[td_data['specimen'].str.contains(this_specimen) == True] # fish out this specimen anisblock = anis_data[anis_data['specimen'].str.contains(this_specimen) == True] # fish out the anisotropy data prior_specimen_interpretations = prior_spec_data[ prior_spec_data['specimen'].str.contains( this_specimen) == True] # fish out prior interpretation # # sort data into types # araiblock, field = pmag.sortarai(thelblock, this_specimen, Zdiff, version=3) first_Z = araiblock[0] GammaChecks = araiblock[5] if len(first_Z) < 3: if backup == 0: k += 1 if verbose: print('skipping specimen - moving forward ', this_specimen) else: k -= 1 if verbose: print('skipping specimen - moving backward ', this_specimen) else: backup = 0 zijdblock, units = pmag.find_dmag_rec(this_specimen, thelblock, version=3) if start == "" and len(prior_specimen_interpretations) > 0: if verbose: print('Looking up saved interpretation....') # # get prior interpretation steps # beg_int = pd.to_numeric(prior_specimen_interpretations. meas_step_min.values).tolist()[0] end_int = pd.to_numeric(prior_specimen_interpretations. meas_step_max.values).tolist()[0] else: beg_int, end_int = "", "" recnum = 0 if verbose: print("index step Dec Inc Int Gamma") for plotrec in zijdblock: if plotrec[0] == beg_int: start = recnum # while we are at it, collect these bounds if plotrec[0] == end_int: end = recnum if verbose: if GammaChecks != "": gamma = "" for g in GammaChecks: if g[0] == plotrec[0] - 273: gamma = g[1] break if gamma != "": print('%i %i %7.1f %7.1f %8.3e %7.1f' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3], gamma)) else: print('%i %i %7.1f %7.1f %8.3e ' % (recnum, plotrec[0] - 273, plotrec[1], plotrec[2], plotrec[3])) recnum += 1 for fig in list(AZD.keys()): pmagplotlib.clearFIG(AZD[fig]) # clear all figures pmagplotlib.plotAZ(AZD, araiblock, zijdblock, this_specimen, units[0]) if verbose: pmagplotlib.drawFIGS(AZD) pars, errcode = pmag.PintPars(thelblock, araiblock, zijdblock, start, end, accept, version=3) pars['measurement_step_unit'] = "K" pars['experiment_type'] = 'LP-PI-TRM' # # work on saving interpretations stuff later # if errcode != 1: # no problem in PintPars pars["specimen_lab_field_dc"] = field pars["specimen_int"] = -1 * field * pars["specimen_b"] pars["er_specimen_name"] = this_specimen #pars,kill=pmag.scoreit(pars,this_specimen_interpretation,accept,'',verbose) # deal with this later pars["specimen_grade"] = 'None' pars['measurement_step_min'] = pars['meas_step_min'] pars['measurement_step_max'] = pars['meas_step_max'] if pars['measurement_step_unit'] == 'K': outstr = "specimen Tmin Tmax N lab_field B_anc b q f(coe) Fvds beta MAD Dang Drats Nptrm Grade R MD% sigma Gamma_max \n" pars_out = (this_specimen, (pars["meas_step_min"] - 273), (pars["meas_step_max"] - 273), (pars["specimen_int_n"]), 1e6 * (pars["specimen_lab_field_dc"]), 1e6 * (pars["specimen_int"]), pars["specimen_b"], pars["specimen_q"], pars["specimen_f"], pars["specimen_fvds"], pars["specimen_b_beta"], pars["int_mad_free"], pars["int_dang"], pars["int_drats"], pars["int_n_ptrm"], pars["specimen_grade"], np.sqrt(pars["specimen_rsc"]), int(pars["int_md"]), pars["specimen_b_sigma"], pars['specimen_gamma']) outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f' % pars_out + '\n' elif pars['measurement_step_unit'] == 'J': outstr = "specimen Wmin Wmax N lab_field B_anc b q f(coe) Fvds beta MAD Dang Drats Nptrm Grade R MD% sigma ThetaMax DeltaMax GammaMax\n" pars_out = ( this_specimen, (pars["meas_step_min"]), (pars["meas_step_max"]), (pars["specimen_int_n"]), 1e6 * (pars["specimen_lab_field_dc"]), 1e6 * (pars["specimen_int"]), pars["specimen_b"], pars["specimen_q"], pars["specimen_f"], pars["specimen_fvds"], pars["specimen_b_beta"], pars["specimen_int_mad"], pars["specimen_int_dang"], pars["specimen_drats"], pars["specimen_int_ptrm_n"], pars["specimen_grade"], np.sqrt(pars["specimen_rsc"]), int(pars["specimen_md"]), pars["specimen_b_sigma"], pars["specimen_theta"], pars["specimen_delta"], pars["specimen_gamma"]) outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f %7.1f %7.1f' % pars_out + '\n' print(outstr) print(outstring) pmagplotlib.plotB(AZD, araiblock, zijdblock, pars) mpars = pmag.domean(araiblock[1], start, end, 'DE-BFL') if verbose: pmagplotlib.drawFIGS(AZD) print('pTRM direction= ', '%7.1f' % (mpars['specimen_dec']), ' %7.1f' % (mpars['specimen_inc']), ' MAD:', '%7.1f' % (mpars['specimen_mad'])) if len(anisblock) > 0: # this specimen has anisotropy data if verbose: print('Found anisotropy record... but ignoring for now ') if plots == 1: if fmt != "pmag": files = {} for key in list(AZD.keys()): files[ key] = 'SP:_' + this_specimen + '_TY:_' + key + '_' + '.' + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['deremag'] = 'DeReMag Plot' titles['zijd'] = 'Zijderveld Plot' titles['arai'] = 'Arai Plot' titles['TRM'] = 'TRM Acquisition data' AZD = pmagplotlib.addBorders(AZD, titles, black, purple) pmagplotlib.saveP(AZD, files) else: # save in pmag format print('pmag format no longer supported') #script="grep "+this_specimen+" output.mag | thellier -mfsi" #script=script+' %8.4e'%(field) #min='%i'%((pars["measurement_step_min"]-273)) #Max='%i'%((pars["measurement_step_max"]-273)) #script=script+" "+min+" "+Max #script=script+" |plotxy;cat mypost >>thellier.ps\n" #pltf.write(script) #pmag.domagicmag(outf,MeasRecs) if specimen != "": sys.exit() # syonara if verbose: ans = input('Return for next specimen, q to quit: ') if ans == 'q': sys.exit() k += 1 # moving on