示例#1
0
def main():
    """
    NAME
        thellier_magic.py

    DESCRIPTION
        plots Thellier-Thellier, allowing interactive setting of bounds
        and customizing of selection criteria.  Saves and reads interpretations
        from a pmag_specimen formatted table, default: thellier_specimens.txt

    SYNTAX
        thellier_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f MEAS, set magic_measurements input file
        -fsp PRIOR, set pmag_specimen prior interpretations file
        -fan ANIS, set rmag_anisotropy file for doing the anisotropy corrections
        -fcr CRIT, set criteria file for grading.
        -fmt [svg,png,jpg], format for images - default is svg
        -sav,  saves plots with out review (default format)
        -spc SPEC, plots single specimen SPEC, saves plot with specified format
            with optional -b bounds adn quits
        -b BEG END: sets  bounds for calculation
           BEG: starting step for slope calculation
           END: ending step for slope calculation
        -z use only z component difference for pTRM calculation

    DEFAULTS
        MEAS: magic_measurements.txt
        REDO: thellier_redo
        CRIT: NONE
        PRIOR: NONE

    OUTPUT
        figures:
            ALL:  numbers refer to temperature steps in command line window
            1) Arai plot:  closed circles are zero-field first/infield
                           open circles are infield first/zero-field
                           triangles are pTRM checks
                           squares are pTRM tail checks
                           VDS is vector difference sum
                           diamonds are bounds for interpretation
            2) Zijderveld plot:  closed (open) symbols are X-Y (X-Z) planes
                                 X rotated to NRM direction
            3) (De/Re)Magnetization diagram:
                           circles are NRM remaining
                           squares are pTRM gained
            4) equal area projections:
               green triangles are pTRM gained direction
                           red (purple) circles are lower(upper) hemisphere of ZI step directions
                           blue (cyan) squares are lower(upper) hemisphere IZ step directions
            5) Optional:  TRM acquisition
            6) Optional: TDS normalization
        command line window:
            list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of magic_measuements)
                     list of possible commands: type letter followed by return to select option
                     saving of plots creates .svg format files with specimen_name, plot type as name
    """
    #
    #   initializations
    #
    meas_file, critout, inspec = "magic_measurements.txt", "", "thellier_specimens.txt"
    first = 1
    inlt = 0
    version_num = pmag.get_version()
    TDinit, Tinit, field, first_save = 0, 0, -1, 1
    user, comment, AniSpec, locname = "", '', "", ""
    ans, specimen, recnum, start, end = 0, 0, 0, 0, 0
    plots, pmag_out, samp_file, style = 0, "", "", "svg"
    verbose = pmagplotlib.verbose
    fmt = '.' + style
    #
    # default acceptance criteria
    #
    accept = pmag.default_criteria(0)[0]  # set the default criteria
    #
    # parse command line options
    #
    Zdiff, anis = 0, 0
    spc, BEG, END = "", "", ""
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        meas_file = sys.argv[ind + 1]
    if '-fsp' in sys.argv:
        ind = sys.argv.index('-fsp')
        inspec = sys.argv[ind + 1]
    if '-fan' in sys.argv:
        ind = sys.argv.index('-fan')
        anisfile = sys.argv[ind + 1]
        anis = 1
        anis_data, file_type = pmag.magic_read(anisfile)
        if verbose:
            print("Anisotropy data read in from ", anisfile)
    if '-fmt' in sys.argv:
        ind = sys.argv.index('-fmt')
        fmt = '.' + sys.argv[ind + 1]
    if '-dpi' in sys.argv:
        ind = sys.argv.index('-dpi')
        dpi = '.' + sys.argv[ind + 1]
    else:
        dpi = 100
    if '-sav' in sys.argv:
        plots = 1
        verbose = 0
    if '-z' in sys.argv:
        Zdiff = 1
    if '-spc' in sys.argv:
        ind = sys.argv.index('-spc')
        spc = sys.argv[ind + 1]
        if '-b' in sys.argv:
            ind = sys.argv.index('-b')
            BEG = int(sys.argv[ind + 1])
            END = int(sys.argv[ind + 2])
    if '-fcr' in sys.argv:
        ind = sys.argv.index('-fcr')
        critout = sys.argv[ind + 1]
        crit_data, file_type = pmag.magic_read(critout)
        if file_type != 'pmag_criteria':
            if verbose:
                print('bad pmag_criteria file, using no acceptance criteria')
            accept = pmag.default_criteria(1)[0]
        else:
            if verbose:
                print("Acceptance criteria read in from ", critout)
            accept = {
                'pmag_criteria_code': 'ACCEPTANCE',
                'er_citation_names': 'This study'
            }
            for critrec in crit_data:
                if 'sample_int_sigma_uT' in critrec.keys(
                ):  # accommodate Shaar's new criterion
                    critrec['sample_int_sigma'] = '%10.3e' % (
                        eval(critrec['sample_int_sigma_uT']) * 1e-6)
                for key in critrec.keys():
                    if key not in accept.keys() and critrec[key] != '':
                        accept[key] = critrec[key]
    try:
        open(inspec, 'rU')
        PriorRecs, file_type = pmag.magic_read(inspec)
        if file_type != 'pmag_specimens':
            print(file_type)
            print(file_type, inspec, " is not a valid pmag_specimens file ")
            sys.exit()
        for rec in PriorRecs:
            if 'magic_software_packages' not in rec.keys():
                rec['magic_software_packages'] = ""
    except IOError:
        PriorRecs = []
        if verbose:
            print("starting new specimen interpretation file: ", inspec)
    meas_data, file_type = pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print(file_type)
        print(file_type, "This is not a valid magic_measurements file ")
        sys.exit()
    backup = 0
    # define figure numbers for arai, zijderveld and
    #   de-,re-magization diagrams
    AZD = {}
    AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4
    pmagplotlib.plot_init(AZD['arai'], 5, 5)
    pmagplotlib.plot_init(AZD['zijd'], 5, 5)
    pmagplotlib.plot_init(AZD['deremag'], 5, 5)
    pmagplotlib.plot_init(AZD['eqarea'], 5, 5)
    #
    #
    #
    # get list of unique specimen names
    #
    CurrRec = []
    sids = pmag.get_specs(meas_data)
    # get plots for specimen s - default is just to step through arai diagrams
    #
    if spc != "":
        specimen = sids.index(spc)
    while specimen < len(sids):
        methcodes = []

        if verbose:
            print(sids[specimen], specimen + 1, 'of ', len(sids))
        MeasRecs = []
        s = sids[specimen]
        datablock, trmblock, tdsrecs = [], [], []
        PmagSpecRec = {}
        if first == 0:
            for key in keys:
                # make sure all new records have same set of keys
                PmagSpecRec[key] = ""
        PmagSpecRec["er_analyst_mail_names"] = user
        PmagSpecRec["specimen_correction"] = 'u'
        #
        # find the data from the meas_data file for this specimen
        #
        for rec in meas_data:
            if rec["er_specimen_name"] == s:
                MeasRecs.append(rec)
                if "magic_method_codes" not in rec.keys():
                    rec["magic_method_codes"] = ""
                methods = rec["magic_method_codes"].split(":")
                meths = []
                for meth in methods:
                    meths.append(meth.strip())  # take off annoying spaces
                methods = ""
                for meth in meths:
                    if meth.strip() not in methcodes and "LP-" in meth:
                        methcodes.append(meth.strip())
                    methods = methods + meth + ":"
                methods = methods[:-1]
                rec["magic_method_codes"] = methods
                if "LP-PI-TRM" in meths:
                    datablock.append(rec)
                if "LP-TRM" in meths:
                    trmblock.append(rec)
                if "LP-TRM-TD" in meths:
                    tdsrecs.append(rec)
        if len(trmblock) > 2 and inspec != "":
            if Tinit == 0:
                Tinit = 1
                AZD['TRM'] = 5
                pmagplotlib.plot_init(AZD['TRM'], 5, 5)
        elif Tinit == 1:  # clear the TRM figure if not needed
            pmagplotlib.clearFIG(AZD['TRM'])
        if len(tdsrecs) > 2:
            if TDinit == 0:
                TDinit = 1
                AZD['TDS'] = 6
                pmagplotlib.plot_init(AZD['TDS'], 5, 5)
        elif TDinit == 1:  # clear the TDS figure if not needed
            pmagplotlib.clearFIG(AZD['TDS'])
        if len(datablock) < 4:
            if backup == 0:
                specimen += 1
                if verbose:
                    print('skipping specimen - moving forward ', s)
            else:
                specimen -= 1
                if verbose:
                    print('skipping specimen - moving backward ', s)
    #
    #  collect info for the PmagSpecRec dictionary
    #
        else:
            rec = datablock[0]
            PmagSpecRec["er_citation_names"] = "This study"
            PmagSpecRec["er_specimen_name"] = s
            PmagSpecRec["er_sample_name"] = rec["er_sample_name"]
            PmagSpecRec["er_site_name"] = rec["er_site_name"]
            PmagSpecRec["er_location_name"] = rec["er_location_name"]
            locname = rec['er_location_name'].replace('/', '-')
            if "er_expedition_name" in rec.keys():
                PmagSpecRec["er_expedition_name"] = rec["er_expedition_name"]
            if "magic_instrument_codes" not in rec.keys():
                rec["magic_instrument_codes"] = ""
            PmagSpecRec["magic_instrument_codes"] = rec[
                "magic_instrument_codes"]
            PmagSpecRec["measurement_step_unit"] = "K"
            if "magic_experiment_name" not in rec.keys():
                rec["magic_experiment_name"] = ""
            else:
                PmagSpecRec["magic_experiment_names"] = rec[
                    "magic_experiment_name"]

            meths = rec["magic_method_codes"].split()
            # sort data into types
            araiblock, field = pmag.sortarai(datablock, s, Zdiff)
            first_Z = araiblock[0]
            GammaChecks = araiblock[5]
            if len(first_Z) < 3:
                if backup == 0:
                    specimen += 1
                    if verbose:
                        print('skipping specimen - moving forward ', s)
                else:
                    specimen -= 1
                    if verbose:
                        print('skipping specimen - moving backward ', s)
            else:
                backup = 0
                zijdblock, units = pmag.find_dmag_rec(s, meas_data)
                recnum = 0
                if verbose:
                    print("index step Dec   Inc  Int       Gamma")
                    for plotrec in zijdblock:
                        if GammaChecks != "":
                            gamma = ""
                            for g in GammaChecks:
                                if g[0] == plotrec[0] - 273:
                                    gamma = g[1]
                                    break
                        if gamma != "":
                            print('%i     %i %7.1f %7.1f %8.3e %7.1f' %
                                  (recnum, plotrec[0] - 273, plotrec[1],
                                   plotrec[2], plotrec[3], gamma))
                        else:
                            print('%i     %i %7.1f %7.1f %8.3e ' %
                                  (recnum, plotrec[0] - 273, plotrec[1],
                                   plotrec[2], plotrec[3]))
                        recnum += 1
                pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, s,
                                          units[0])
                if verbose:
                    pmagplotlib.draw_figs(AZD)
                if len(tdsrecs) > 2:  # a TDS experiment
                    tdsblock = []  # make a list for the TDS  data
                    Mkeys = [
                        'measurement_magnitude', 'measurement_magn_moment',
                        'measurement_magn_volume', 'measuruement_magn_mass'
                    ]
                    mkey, k = "", 0
                    # find which type of intensity
                    while mkey == "" and k < len(Mkeys) - 1:
                        key = Mkeys[k]
                        if key in tdsrecs[0].keys() and tdsrecs[0][key] != "":
                            mkey = key
                        k += 1
                    if mkey == "":
                        break  # get outta here
                    Tnorm = ""
                    for tdrec in tdsrecs:
                        meths = tdrec['magic_method_codes'].split(":")
                        for meth in meths:
                            # strip off potential nasty spaces
                            meth.replace(" ", "")
                        if 'LT-T-I' in meths and Tnorm == "":  # found first total TRM
                            # normalize by total TRM
                            Tnorm = float(tdrec[mkey])
                            # put in the zero step
                            tdsblock.append([273, zijdblock[0][3] / Tnorm, 1.])
                        # found a LP-TRM-TD demag step, now need complementary LT-T-Z from zijdblock
                        if 'LT-T-Z' in meths and Tnorm != "":
                            step = float(tdrec['treatment_temp'])
                            Tint = ""
                            if mkey != "":
                                Tint = float(tdrec[mkey])
                            if Tint != "":
                                for zrec in zijdblock:
                                    if zrec[0] == step:  # found matching
                                        tdsblock.append([
                                            step, zrec[3] / Tnorm, Tint / Tnorm
                                        ])
                                        break
                    if len(tdsblock) > 2:
                        pmagplotlib.plot_tds(AZD['TDS'], tdsblock,
                                             s + ':LP-PI-TDS:')
                        if verbose:
                            pmagplotlib(draw_figs(AZD))
                    else:
                        print("Something wrong here")
                if anis == 1:  # look up anisotropy data for this specimen
                    AniSpec = ""
                    for aspec in anis_data:
                        if aspec["er_specimen_name"] == PmagSpecRec[
                                "er_specimen_name"]:
                            AniSpec = aspec
                            if verbose:
                                print('Found anisotropy record...')
                            break
                if inspec != "":
                    if verbose:
                        print('Looking up saved interpretation....')
                    found = 0
                    for k in range(len(PriorRecs)):
                        try:
                            if PriorRecs[k]["er_specimen_name"] == s:
                                found = 1
                                CurrRec.append(PriorRecs[k])
                                for j in range(len(zijdblock)):
                                    if float(zijdblock[j][0]) == float(
                                            PriorRecs[k]
                                        ["measurement_step_min"]):
                                        start = j
                                    if float(zijdblock[j][0]) == float(
                                            PriorRecs[k]
                                        ["measurement_step_max"]):
                                        end = j
                                pars, errcode = pmag.PintPars(
                                    datablock, araiblock, zijdblock, start,
                                    end, accept)
                                pars['measurement_step_unit'] = "K"
                                pars['experiment_type'] = 'LP-PI-TRM'
                                # put in CurrRec, take out of PriorRecs
                                del PriorRecs[k]
                                if errcode != 1:
                                    pars["specimen_lab_field_dc"] = field
                                    pars["specimen_int"] = -1 * \
                                        field*pars["specimen_b"]
                                    pars["er_specimen_name"] = s
                                    if verbose:
                                        print('Saved interpretation: ')
                                    pars, kill = pmag.scoreit(
                                        pars, PmagSpecRec, accept, '', verbose)
                                    pmagplotlib.plot_b(AZD, araiblock,
                                                       zijdblock, pars)
                                    if verbose:
                                        pmagplotlib.draw_figs(AZD)
                                    if len(trmblock) > 2:
                                        blab = field
                                        best = pars["specimen_int"]
                                        Bs, TRMs = [], []
                                        for trec in trmblock:
                                            Bs.append(
                                                float(
                                                    trec['treatment_dc_field'])
                                            )
                                            TRMs.append(
                                                float(trec[
                                                    'measurement_magn_moment'])
                                            )
                                        # calculate best fit parameters through TRM acquisition data, and get new banc
                                        NLpars = nlt.NLtrm(
                                            Bs, TRMs, best, blab, 0)
                                        Mp, Bp = [], []
                                        for k in range(int(max(Bs) * 1e6)):
                                            Bp.append(float(k) * 1e-6)
                                            # predicted NRM for this field
                                            npred = nlt.TRM(
                                                Bp[-1], NLpars['xopt'][0],
                                                NLpars['xopt'][1])
                                            Mp.append(npred)
                                        pmagplotlib.plot_trm(
                                            AZD['TRM'], Bs, TRMs, Bp, Mp,
                                            NLpars,
                                            trec['magic_experiment_name'])
                                        PmagSpecRec['specimen_int'] = NLpars[
                                            'banc']
                                        if verbose:
                                            print('Banc= ',
                                                  float(NLpars['banc']) * 1e6)
                                            pmagplotlib.draw_figs(AZD)
                                    mpars = pmag.domean(
                                        araiblock[1], start, end, 'DE-BFL')
                                    if verbose:
                                        print(
                                            'pTRM direction= ',
                                            '%7.1f' % (mpars['specimen_dec']),
                                            ' %7.1f' % (mpars['specimen_inc']),
                                            ' MAD:',
                                            '%7.1f' % (mpars['specimen_mad']))
                                    if AniSpec != "":
                                        CpTRM = pmag.Dir_anis_corr([
                                            mpars['specimen_dec'],
                                            mpars['specimen_inc']
                                        ], AniSpec)
                                        AniSpecRec = pmag.doaniscorr(
                                            PmagSpecRec, AniSpec)
                                        if verbose:
                                            print(
                                                'Anisotropy corrected TRM direction= ',
                                                '%7.1f' % (CpTRM[0]),
                                                ' %7.1f' % (CpTRM[1]))
                                            print(
                                                'Anisotropy corrected intensity= ',
                                                float(
                                                    AniSpecRec['specimen_int'])
                                                * 1e6)
                                else:
                                    print('error on specimen ', s)
                        except:
                            pass
                    if verbose and found == 0:
                        print('    None found :(  ')
                if spc != "":
                    if BEG != "":
                        pars, errcode = pmag.PintPars(datablock, araiblock,
                                                      zijdblock, BEG, END,
                                                      accept)
                        pars['measurement_step_unit'] = "K"
                        pars["specimen_lab_field_dc"] = field
                        pars["specimen_int"] = -1 * field * pars["specimen_b"]
                        pars["er_specimen_name"] = s
                        pars['specimen_grade'] = ''  # ungraded
                        pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars)
                        if verbose:
                            pmagplotlib.draw_figs(AZD)
                        if len(trmblock) > 2:
                            if inlt == 0:
                                inlt = 1
                            blab = field
                            best = pars["specimen_int"]
                            Bs, TRMs = [], []
                            for trec in trmblock:
                                Bs.append(float(trec['treatment_dc_field']))
                                TRMs.append(
                                    float(trec['measurement_magn_moment']))
                            # calculate best fit parameters through TRM acquisition data, and get new banc
                            NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0)
                            #
                            Mp, Bp = [], []
                            for k in range(int(max(Bs) * 1e6)):
                                Bp.append(float(k) * 1e-6)
                                # predicted NRM for this field
                                npred = nlt.TRM(Bp[-1], NLpars['xopt'][0],
                                                NLpars['xopt'][1])
                    files = {}
                    for key in AZD.keys():
                        files[key] = s + '_' + key + fmt
                    pmagplotlib.save_plots(AZD, files, dpi=dpi)
                    sys.exit()
                if verbose:
                    ans = 'b'
                    while ans != "":
                        print("""
               s[a]ve plot, set [b]ounds for calculation, [d]elete current interpretation, [p]revious, [s]ample, [q]uit:
               """)
                        ans = input('Return for next specimen \n')
                        if ans == "":
                            specimen += 1
                        if ans == "d":
                            save_redo(PriorRecs, inspec)
                            CurrRec = []
                            pmagplotlib.plot_arai_zij(AZD, araiblock,
                                                      zijdblock, s, units[0])
                            if verbose:
                                pmagplotlib.draw_figs(AZD)
                        if ans == 'a':
                            files = {}
                            for key in AZD.keys():
                                files[key] = "LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name'] + \
                                    '_SA:_' + \
                                    PmagSpecRec['er_sample_name'] + \
                                    '_SP:_'+s+'_CO:_s_TY:_'+key+fmt
                            pmagplotlib.save_plots(AZD, files)
                            ans = ""
                        if ans == 'q':
                            print("Good bye")
                            sys.exit()
                        if ans == 'p':
                            specimen = specimen - 1
                            backup = 1
                            ans = ""
                        if ans == 's':
                            keepon = 1
                            spec = input(
                                'Enter desired specimen name (or first part there of): '
                            )
                            while keepon == 1:
                                try:
                                    specimen = sids.index(spec)
                                    keepon = 0
                                except:
                                    tmplist = []
                                    for qq in range(len(sids)):
                                        if spec in sids[qq]:
                                            tmplist.append(sids[qq])
                                    print(specimen,
                                          " not found, but this was: ")
                                    print(tmplist)
                                    spec = input('Select one or try again\n ')
                            ans = ""
                        if ans == 'b':
                            if end == 0 or end >= len(zijdblock):
                                end = len(zijdblock) - 1
                            GoOn = 0
                            while GoOn == 0:
                                answer = input(
                                    'Enter index of first point for calculation: ['
                                    + str(start) + ']  ')
                                try:
                                    start = int(answer)
                                    answer = input(
                                        'Enter index  of last point for calculation: ['
                                        + str(end) + ']  ')
                                    end = int(answer)
                                    if start >= 0 and start < len(
                                            zijdblock
                                    ) - 2 and end > 0 and end < len(
                                            zijdblock) or start >= end:
                                        GoOn = 1
                                    else:
                                        print("Bad endpoints - try again! ")
                                        start, end = 0, len(zijdblock)
                                except ValueError:
                                    print("Bad endpoints - try again! ")
                                    start, end = 0, len(zijdblock)
                            s = sids[specimen]
                            pars, errcode = pmag.PintPars(
                                datablock, araiblock, zijdblock, start, end,
                                accept)
                            pars['measurement_step_unit'] = "K"
                            pars["specimen_lab_field_dc"] = field
                            pars["specimen_int"] = -1 * field * pars[
                                "specimen_b"]
                            pars["er_specimen_name"] = s
                            pars, kill = pmag.scoreit(pars, PmagSpecRec,
                                                      accept, '', 0)
                            PmagSpecRec['specimen_scat'] = pars[
                                'specimen_scat']
                            PmagSpecRec['specimen_frac'] = '%5.3f' % (
                                pars['specimen_frac'])
                            PmagSpecRec['specimen_gmax'] = '%5.3f' % (
                                pars['specimen_gmax'])
                            PmagSpecRec["measurement_step_min"] = '%8.3e' % (
                                pars["measurement_step_min"])
                            PmagSpecRec["measurement_step_max"] = '%8.3e' % (
                                pars["measurement_step_max"])
                            PmagSpecRec["measurement_step_unit"] = "K"
                            PmagSpecRec["specimen_int_n"] = '%i' % (
                                pars["specimen_int_n"])
                            PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % (
                                pars["specimen_lab_field_dc"])
                            PmagSpecRec["specimen_int"] = '%9.4e ' % (
                                pars["specimen_int"])
                            PmagSpecRec["specimen_b"] = '%5.3f ' % (
                                pars["specimen_b"])
                            PmagSpecRec["specimen_q"] = '%5.1f ' % (
                                pars["specimen_q"])
                            PmagSpecRec["specimen_f"] = '%5.3f ' % (
                                pars["specimen_f"])
                            PmagSpecRec["specimen_fvds"] = '%5.3f' % (
                                pars["specimen_fvds"])
                            PmagSpecRec["specimen_b_beta"] = '%5.3f' % (
                                pars["specimen_b_beta"])
                            PmagSpecRec["specimen_int_mad"] = '%7.1f' % (
                                pars["specimen_int_mad"])
                            PmagSpecRec["specimen_Z"] = '%7.1f' % (
                                pars["specimen_Z"])
                            PmagSpecRec["specimen_gamma"] = '%7.1f' % (
                                pars["specimen_gamma"])
                            PmagSpecRec["specimen_grade"] = pars[
                                "specimen_grade"]
                            if pars["method_codes"] != "":
                                tmpcodes = pars["method_codes"].split(":")
                                for t in tmpcodes:
                                    if t.strip() not in methcodes:
                                        methcodes.append(t.strip())
                            PmagSpecRec["specimen_dec"] = '%7.1f' % (
                                pars["specimen_dec"])
                            PmagSpecRec["specimen_inc"] = '%7.1f' % (
                                pars["specimen_inc"])
                            PmagSpecRec["specimen_tilt_correction"] = '-1'
                            PmagSpecRec["specimen_direction_type"] = 'l'
                            # this is redundant, but helpful - won't be imported
                            PmagSpecRec["direction_type"] = 'l'
                            PmagSpecRec["specimen_int_dang"] = '%7.1f ' % (
                                pars["specimen_int_dang"])
                            PmagSpecRec["specimen_drats"] = '%7.1f ' % (
                                pars["specimen_drats"])
                            PmagSpecRec["specimen_drat"] = '%7.1f ' % (
                                pars["specimen_drat"])
                            PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % (
                                pars["specimen_int_ptrm_n"])
                            PmagSpecRec["specimen_rsc"] = '%6.4f ' % (
                                pars["specimen_rsc"])
                            PmagSpecRec["specimen_md"] = '%i ' % (int(
                                pars["specimen_md"]))
                            if PmagSpecRec["specimen_md"] == '-1':
                                PmagSpecRec["specimen_md"] = ""
                            PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % (
                                pars["specimen_b_sigma"])
                            if "IE-TT" not in methcodes:
                                methcodes.append("IE-TT")
                            methods = ""
                            for meth in methcodes:
                                methods = methods + meth + ":"
                            PmagSpecRec["magic_method_codes"] = methods[:-1]
                            PmagSpecRec["specimen_description"] = comment
                            PmagSpecRec[
                                "magic_software_packages"] = version_num
                            pmagplotlib.plot_arai_zij(AZD, araiblock,
                                                      zijdblock, s, units[0])
                            pmagplotlib.plot_b(AZD, araiblock, zijdblock, pars)
                            if verbose:
                                pmagplotlib.draw_figs(AZD)
                            if len(trmblock) > 2:
                                blab = field
                                best = pars["specimen_int"]
                                Bs, TRMs = [], []
                                for trec in trmblock:
                                    Bs.append(float(
                                        trec['treatment_dc_field']))
                                    TRMs.append(
                                        float(trec['measurement_magn_moment']))
                                # calculate best fit parameters through TRM acquisition data, and get new banc
                                NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0)
                                Mp, Bp = [], []
                                for k in range(int(max(Bs) * 1e6)):
                                    Bp.append(float(k) * 1e-6)
                                    # predicted NRM for this field
                                    npred = nlt.TRM(Bp[-1], NLpars['xopt'][0],
                                                    NLpars['xopt'][1])
                                    Mp.append(npred)
                                pmagplotlib.plot_trm(
                                    AZD['TRM'], Bs, TRMs, Bp, Mp, NLpars,
                                    trec['magic_experiment_name'])
                                if verbose:
                                    print(
                                        'Non-linear TRM corrected intensity= ',
                                        float(NLpars['banc']) * 1e6)
                            if verbose:
                                pmagplotlib.draw_figs(AZD)
                            pars["specimen_lab_field_dc"] = field
                            pars["specimen_int"] = -1 * field * pars[
                                "specimen_b"]
                            pars, kill = pmag.scoreit(pars, PmagSpecRec,
                                                      accept, '', verbose)
                            saveit = input(
                                "Save this interpretation? [y]/n \n")
                            if saveit != 'n':
                                # put back an interpretation
                                PriorRecs.append(PmagSpecRec)
                                specimen += 1
                                save_redo(PriorRecs, inspec)
                            ans = ""
                elif plots == 1:
                    specimen += 1
                    if fmt != ".pmag":
                        files = {}
                        for key in AZD.keys():
                            files[key] = "LO:_"+locname+'_SI:_'+PmagSpecRec['er_site_name']+'_SA:_' + \
                                PmagSpecRec['er_sample_name'] + \
                                '_SP:_'+s+'_CO:_s_TY:_'+key+'_'+fmt
                        if pmagplotlib.isServer:
                            black = '#000000'
                            purple = '#800080'
                            titles = {}
                            titles['deremag'] = 'DeReMag Plot'
                            titles['zijd'] = 'Zijderveld Plot'
                            titles['arai'] = 'Arai Plot'
                            AZD = pmagplotlib.add_borders(
                                AZD, titles, black, purple)
                        pmagplotlib.save_plots(AZD, files, dpi=dpi)
    #                   pmagplotlib.combineFigs(s,files,3)
                    else:  # save in pmag format
                        script = "grep " + s + " output.mag | thellier -mfsi"
                        script = script + ' %8.4e' % (field)
                        min = '%i' % ((pars["measurement_step_min"] - 273))
                        Max = '%i' % ((pars["measurement_step_max"] - 273))
                        script = script + " " + min + " " + Max
                        script = script + " |plotxy;cat mypost >>thellier.ps\n"
                        pltf.write(script)
                        pmag.domagicmag(outf, MeasRecs)
        if len(CurrRec) > 0:
            for rec in CurrRec:
                PriorRecs.append(rec)
        CurrRec = []
    if plots != 1 and verbose:
        ans = input(" Save last plot? 1/[0] ")
        if ans == "1":
            if fmt != ".pmag":
                files = {}
                for key in AZD.keys():
                    files[key] = s + '_' + key + fmt
                pmagplotlib.save_plots(AZD, files, dpi=dpi)
        else:
            print("\n Good bye\n")
            sys.exit()
        if len(CurrRec) > 0:
            PriorRecs.append(CurrRec)  # put back an interpretation
        if len(PriorRecs) > 0:
            save_redo(PriorRecs, inspec)
            print('Updated interpretations saved in ', inspec)
    if verbose:
        print("Good bye")
示例#2
0
def main():
    """
    NAME
        microwave_magic.py
    
    DESCRIPTION
        plots microwave paleointensity data, allowing interactive setting of bounds.
        Saves and reads interpretations
        from a pmag_specimen formatted table, default: microwave_specimens.txt

    SYNTAX 
        microwave_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f MEAS, set magic_measurements input file
        -fsp PRIOR, set pmag_specimen prior interpretations file
        -fcr CRIT, set criteria file for grading.  
        -fmt [svg,png,jpg], format for images - default is svg
        -sav,  saves plots with out review (default format)
        -spc SPEC, plots single specimen SPEC, saves plot with specified format
            with optional -b bounds adn quits
        -b BEG END: sets  bounds for calculation
           BEG: starting step for slope calculation
           END: ending step for slope calculation
        
    DEFAULTS
        MEAS: magic_measurements.txt
        CRIT: NONE
        PRIOR: microwave_specimens.txt
  
    OUTPUT 
        figures:
            ALL:  numbers refer to temperature steps in command line window
            1) Arai plot:  closed circles are zero-field first/infield
                           open circles are infield first/zero-field
                           triangles are pTRM checks
                           squares are pTRM tail checks
                           VDS is vector difference sum
                           diamonds are bounds for interpretation
            2) Zijderveld plot:  closed (open) symbols are X-Y (X-Z) planes
                                 X rotated to NRM direction
            3) (De/Re)Magnetization diagram:
                           circles are NRM remaining
                           squares are pTRM gained
        command line window:
            list is: temperature step numbers, power (J), Dec, Inc, Int (units of magic_measuements)
                     list of possible commands: type letter followed by return to select option
                     saving of plots creates .svg format files with specimen_name, plot type as name
    """
    #
    #   initializations
    #
    meas_file, critout, inspec = "magic_measurements.txt", "", "microwave_specimens.txt"
    inlt = 0
    version_num = pmag.get_version()
    Tinit, DCZ, field, first_save = 0, 0, -1, 1
    user, comment = "", ''
    ans, specimen, recnum, start, end = 0, 0, 0, 0, 0
    plots, pmag_out, samp_file, style = 0, "", "", "svg"
    fmt = '.' + style
    #
    # default acceptance criteria
    #
    accept_keys = [
        'specimen_int_ptrm_n', 'specimen_md', 'specimen_fvds',
        'specimen_b_beta', 'specimen_dang', 'specimen_drats', 'specimen_Z'
    ]
    accept = {}
    accept['specimen_int_ptrm_n'] = 2
    accept['specimen_md'] = 10
    accept['specimen_fvds'] = 0.35
    accept['specimen_b_beta'] = .1
    accept['specimen_int_mad'] = 7
    accept['specimen_dang'] = 10
    accept['specimen_drats'] = 10
    accept['specimen_Z'] = 10
    #
    # parse command line options
    #
    spc, BEG, END = "", "", ""
    if '-h' in sys.argv:
        print main.__doc__
        sys.exit()
    if '-f' in sys.argv:
        ind = sys.argv.index('-f')
        meas_file = sys.argv[ind + 1]
    if '-fsp' in sys.argv:
        ind = sys.argv.index('-fsp')
        inspec = sys.argv[ind + 1]
    if '-fcr' in sys.argv:
        ind = sys.argv.index('-fcr')
        critout = sys.argv[ind + 1]
    if '-fmt' in sys.argv:
        ind = sys.argv.index('-fmt')
        fmt = '.' + sys.argv[ind + 1]
    if '-spc' in sys.argv:
        ind = sys.argv.index('-spc')
        spc = sys.argv[ind + 1]
        if '-b' in sys.argv:
            ind = sys.argv.index('-b')
            BEG = int(sys.argv[ind + 1])
            END = int(sys.argv[ind + 2])
    if critout != "":
        crit_data, file_type = pmag.magic_read(critout)
        if pmagplotlib.verbose:
            print "Acceptance criteria read in from ", critout
        accept = {}
        accept['specimen_int_ptrm_n'] = 2.0
        for critrec in crit_data:
            if critrec["pmag_criteria_code"] == "IE-SPEC":
                for key in accept_keys:
                    if key not in critrec.keys():
                        accept[key] = -1
                    else:
                        accept[key] = float(critrec[key])
    try:
        open(inspec, 'rU')
        PriorRecs, file_type = pmag.magic_read(inspec)
        if file_type != 'pmag_specimens':
            print file_type
            print file_type, inspec, " is not a valid pmag_specimens file "
            sys.exit()
        for rec in PriorRecs:
            if 'magic_software_packages' not in rec.keys():
                rec['magic_software_packages'] = ""
    except IOError:
        PriorRecs = []
        if pmagplotlib.verbose:
            print "starting new specimen interpretation file: ", inspec
    meas_data, file_type = pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print file_type
        print file_type, "This is not a valid magic_measurements file "
        sys.exit()
    backup = 0
    # define figure numbers for arai, zijderveld and
    #   de-,re-magization diagrams
    AZD = {}
    AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4
    pmagplotlib.plot_init(AZD['arai'], 4, 4)
    pmagplotlib.plot_init(AZD['zijd'], 4, 4)
    pmagplotlib.plot_init(AZD['deremag'], 4, 4)
    pmagplotlib.plot_init(AZD['eqarea'], 4, 4)
    #
    #
    #
    # get list of unique specimen names
    #
    CurrRec = []
    sids = pmag.get_specs(meas_data)
    # get plots for specimen s - default is just to step through arai diagrams
    #
    if spc != "": specimen = sids.index(spc)
    while specimen < len(sids):
        methcodes = []
        if pmagplotlib.verbose and spc != "":
            print sids[specimen], specimen + 1, 'of ', len(sids)
        MeasRecs = []
        s = sids[specimen]
        datablock, trmblock = [], []
        PmagSpecRec = {}
        PmagSpecRec["er_analyst_mail_names"] = user
        PmagSpecRec["specimen_correction"] = 'u'
        #
        # find the data from the meas_data file for this specimen
        #
        for rec in meas_data:
            if rec["er_specimen_name"] == s:
                MeasRecs.append(rec)
                methods = rec["magic_method_codes"].split(":")
                meths = []
                for meth in methods:
                    meths.append(meth.strip())  # take off annoying spaces
                methods = ""
                for meth in meths:
                    if meth.strip() not in methcodes and "LP-" in meth:
                        methcodes.append(meth.strip())
                    methods = methods + meth + ":"
                methods = methods[:-1]
                rec["magic_method_codes"] = methods
                if "LP-PI-M" in meths: datablock.append(rec)
                if "LP-MRM" in meths: trmblock.append(rec)
        if len(trmblock) > 2 and inspec != "":
            if Tinit == 0:
                Tinit = 1
                AZD['MRM'] = 4
                pmagplotlib.plot_init(AZD['MRM'], 4, 4)
            elif Tinit == 1:
                pmagplotlib.clearFIG(AZD['MRM'])
        if len(datablock) < 4:
            if backup == 0:
                specimen += 1
                if pmagplotlib.verbose:
                    print 'skipping specimen - moving forward ', s
            else:
                specimen -= 1
                if pmagplotlib.verbose:
                    print 'skipping specimen - moving backward ', s
    #
    #  collect info for the PmagSpecRec dictionary
    #
        else:
            rec = datablock[0]
            PmagSpecRec["er_citation_names"] = "This study"
            PmagSpecRec["er_specimen_name"] = s
            PmagSpecRec["er_sample_name"] = rec["er_sample_name"]
            PmagSpecRec["er_site_name"] = rec["er_site_name"]
            PmagSpecRec["er_location_name"] = rec["er_location_name"]
            if "magic_instrument_codes" not in rec.keys():
                rec["magic_instrument_codes"] = ""
            PmagSpecRec["magic_instrument_codes"] = rec[
                "magic_instrument_codes"]
            PmagSpecRec["measurement_step_unit"] = "J"
            if "magic_experiment_name" not in rec.keys():
                rec["magic_experiment_name"] = ""
            else:
                PmagSpecRec["magic_experiment_names"] = rec[
                    "magic_experiment_name"]

            meths = rec["magic_method_codes"].split(':')
            # sort data into types
            if "LP-PI-M-D" in meths:  # this is a double heating experiment
                exp_type = "LP-PI-M-D"
            elif "LP-PI-M-S" in meths:
                exp_type = "LP-PI-M-S"
            else:
                print "experiment type not supported yet "
                break
            araiblock, field = pmag.sortmwarai(datablock, exp_type)
            first_Z = araiblock[0]
            first_I = araiblock[1]
            GammaChecks = araiblock[-3]
            ThetaChecks = araiblock[-2]
            DeltaChecks = araiblock[-1]
            if len(first_Z) < 3:
                if backup == 0:
                    specimen += 1
                    if pmagplotlib.verbose:
                        print 'skipping specimen - moving forward ', s
                else:
                    specimen -= 1
                    if pmagplotlib.verbose:
                        print 'skipping specimen - moving backward ', s
            else:
                backup = 0
                zijdblock, units = pmag.find_dmag_rec(s, meas_data)
                if exp_type == "LP-PI-M-D":
                    recnum = 0
                    print "ZStep Watts  Dec Inc  Int"
                    for plotrec in zijdblock:
                        if pmagplotlib.verbose:
                            print '%i  %i %7.1f %7.1f %8.3e ' % (
                                recnum, plotrec[0], plotrec[1], plotrec[2],
                                plotrec[3])
                            recnum += 1
                    recnum = 1
                    if GammaChecks != "":
                        print "IStep Watts  Gamma"
                        for gamma in GammaChecks:
                            if pmagplotlib.verbose:
                                print '%i %i %7.1f ' % (recnum, gamma[0],
                                                        gamma[1])
                            recnum += 1
                if exp_type == "LP-PI-M-S":
                    if pmagplotlib.verbose:
                        print "IStep Watts  Theta"
                        kk = 0
                        for theta in ThetaChecks:
                            kk += 1
                            print '%i  %i %7.1f ' % (kk, theta[0], theta[1])
                    if pmagplotlib.verbose:
                        print "Watts  Delta"
                        for delta in DeltaChecks:
                            print '%i %7.1f ' % (delta[0], delta[1])
                pmagplotlib.plotAZ(AZD, araiblock, zijdblock, s, units[0])
                if inspec != "":
                    if pmagplotlib.verbose:
                        print 'Looking up saved interpretation....'
                    found = 0
                    for k in range(len(PriorRecs)):
                        try:
                            if PriorRecs[k]["er_specimen_name"] == s:
                                found = 1
                                CurrRec.append(PriorRecs[k])
                                for j in range(len(araiblock[0])):
                                    if float(araiblock[0][j][0]) == float(
                                            PriorRecs[k]
                                        ["measurement_step_min"]):
                                        start = j
                                    if float(araiblock[0][j][0]) == float(
                                            PriorRecs[k]
                                        ["measurement_step_max"]):
                                        end = j
                                pars, errcode = pmag.PintPars(
                                    araiblock, zijdblock, start, end)
                                pars['measurement_step_unit'] = "J"
                                del PriorRecs[
                                    k]  # put in CurrRec, take out of PriorRecs
                                if errcode != 1:
                                    pars["specimen_lab_field_dc"] = field
                                    pars["specimen_int"] = -1 * field * pars[
                                        "specimen_b"]
                                    pars["er_specimen_name"] = s
                                    if pmagplotlib.verbose:
                                        print 'Saved interpretation: '
                                    pars = pmag.scoreit(
                                        pars, PmagSpecRec, accept, '', 0)
                                    pmagplotlib.plotB(AZD, araiblock,
                                                      zijdblock, pars)
                                    if len(trmblock) > 2:
                                        blab = field
                                        best = pars["specimen_int"]
                                        Bs, TRMs = [], []
                                        for trec in trmblock:
                                            Bs.append(
                                                float(
                                                    trec['treatment_dc_field'])
                                            )
                                            TRMs.append(
                                                float(trec[
                                                    'measurement_magn_moment'])
                                            )
                                        NLpars = nlt.NLtrm(
                                            Bs, TRMs, best, blab, 0
                                        )  # calculate best fit parameters through TRM acquisition data, and get new banc
                                        Mp, Bp = [], []
                                        for k in range(int(max(Bs) * 1e6)):
                                            Bp.append(float(k) * 1e-6)
                                            npred = nlt.TRM(
                                                Bp[-1], NLpars['xopt'][0],
                                                NLpars['xopt'][1]
                                            )  # predicted NRM for this field
                                            Mp.append(npred)
                                        pmagplotlib.plotTRM(
                                            AZD['MRM'], Bs, TRMs, Bp, Mp,
                                            NLpars,
                                            trec['magic_experiment_name'])
                                        print npred
                                        print 'Banc= ', float(
                                            NLpars['banc']) * 1e6
                                        if pmagplotlib.verbose:
                                            print 'Banc= ', float(
                                                NLpars['banc']) * 1e6
                                        pmagplotlib.drawFIGS(AZD)
                                else:
                                    print 'error on specimen ', s
                        except:
                            pass
                    if pmagplotlib.verbose and found == 0:
                        print '    None found :(  '
                if spc != "":
                    if BEG != "":
                        pars, errcode = pmag.PintPars(araiblock, zijdblock,
                                                      BEG, END)
                        pars['measurement_step_unit'] = "J"
                        pars["specimen_lab_field_dc"] = field
                        pars["specimen_int"] = -1 * field * pars["specimen_b"]
                        pars["er_specimen_name"] = s
                        pars['specimen_grade'] = ''  # ungraded
                        pmagplotlib.plotB(AZD, araiblock, zijdblock, pars)
                        if len(trmblock) > 2:
                            if inlt == 0:
                                donlt()
                                inlt = 1
                            blab = field
                            best = pars["specimen_int"]
                            Bs, TRMs = [], []
                            for trec in trmblock:
                                Bs.append(float(trec['treatment_dc_field']))
                                TRMs.append(
                                    float(trec['measurement_magn_moment']))
                            NLpars = nlt.NLtrm(
                                Bs, TRMs, best, blab, 0
                            )  # calculate best fit parameters through TRM acquisition data, and get new banc
                            #
                            Mp, Bp = [], []
                            for k in range(int(max(Bs) * 1e6)):
                                Bp.append(float(k) * 1e-6)
                                npred = nlt.TRM(
                                    Bp[-1], NLpars['xopt'][0], NLpars['xopt']
                                    [1])  # predicted NRM for this field
                    files = {}
                    for key in AZD.keys():
                        files[key] = s + '_' + key + fmt
                    pmagplotlib.saveP(AZD, files)
                    sys.exit()
                if plots == 0:
                    ans = 'b'
                    while ans != "":
                        print """
               s[a]ve plot, set [b]ounds for calculation, [d]elete current interpretation, [p]revious, [s]ample, [q]uit:
               """
                        ans = raw_input('Return for next specimen \n')
                        if ans == "":
                            specimen += 1
                        if ans == "d":
                            save_redo(PriorRecs, inspec)
                            CurrRec = []
                            pmagplotlib.plotAZ(AZD, araiblock, zijdblock, s,
                                               units[0])
                            pmagplotlib.drawFIGS(AZD)
                        if ans == 'a':
                            files = {}
                            for key in AZD.keys():
                                files[key] = s + '_' + key + fmt
                            pmagplotlib.saveP(AZD, files)
                            ans = ""
                        if ans == 'q':
                            print "Good bye"
                            sys.exit()
                        if ans == 'p':
                            specimen = specimen - 1
                            backup = 1
                            ans = ""
                        if ans == 's':
                            keepon = 1
                            spec = raw_input(
                                'Enter desired specimen name (or first part there of): '
                            )
                            while keepon == 1:
                                try:
                                    specimen = sids.index(spec)
                                    keepon = 0
                                except:
                                    tmplist = []
                                    for qq in range(len(sids)):
                                        if spec in sids[qq]:
                                            tmplist.append(sids[qq])
                                    print specimen, " not found, but this was: "
                                    print tmplist
                                    spec = raw_input(
                                        'Select one or try again\n ')
                            ans = ""
                        if ans == 'b':
                            if end == 0 or end >= len(araiblock[0]):
                                end = len(araiblock[0]) - 1
                            GoOn = 0
                            while GoOn == 0:
                                print 'Enter index of first point for calculation: ', '[', start, ']'
                                answer = raw_input('return to keep default  ')
                                if answer != "": start = int(answer)
                                print 'Enter index  of last point for calculation: ', '[', end, ']'
                                answer = raw_input('return to keep default  ')
                                if answer != "":
                                    end = int(answer)
                                if start >= 0 and start < len(araiblock[
                                        0]) - 2 and end > 0 and end < len(
                                            araiblock[0]) and start < end:
                                    GoOn = 1
                                else:
                                    print "Bad endpoints - try again! "
                                    start, end = 0, len(araiblock)
                            s = sids[specimen]
                            pars, errcode = pmag.PintPars(
                                araiblock, zijdblock, start, end)
                            pars['measurement_step_unit'] = "J"
                            pars["specimen_lab_field_dc"] = field
                            pars["specimen_int"] = -1 * field * pars[
                                "specimen_b"]
                            pars["er_specimen_name"] = s
                            pars = pmag.scoreit(pars, PmagSpecRec, accept, '',
                                                0)
                            PmagSpecRec["measurement_step_min"] = '%8.3e' % (
                                pars["measurement_step_min"])
                            PmagSpecRec["measurement_step_max"] = '%8.3e' % (
                                pars["measurement_step_max"])
                            PmagSpecRec["measurement_step_unit"] = "J"
                            PmagSpecRec["specimen_int_n"] = '%i' % (
                                pars["specimen_int_n"])
                            PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % (
                                pars["specimen_lab_field_dc"])
                            PmagSpecRec["specimen_int"] = '%8.3e ' % (
                                pars["specimen_int"])
                            PmagSpecRec["specimen_b"] = '%5.3f ' % (
                                pars["specimen_b"])
                            PmagSpecRec["specimen_q"] = '%5.1f ' % (
                                pars["specimen_q"])
                            PmagSpecRec["specimen_f"] = '%5.3f ' % (
                                pars["specimen_f"])
                            PmagSpecRec["specimen_fvds"] = '%5.3f' % (
                                pars["specimen_fvds"])
                            PmagSpecRec["specimen_b_beta"] = '%5.3f' % (
                                pars["specimen_b_beta"])
                            PmagSpecRec["specimen_int_mad"] = '%7.1f' % (
                                pars["specimen_int_mad"])
                            PmagSpecRec["specimen_Z"] = '%7.1f' % (
                                pars["specimen_Z"])
                            if pars["method_codes"] != "":
                                tmpcodes = pars["method_codes"].split(":")
                                for t in tmpcodes:
                                    if t.strip() not in methcodes:
                                        methcodes.append(t.strip())
                            PmagSpecRec["specimen_dec"] = '%7.1f' % (
                                pars["specimen_dec"])
                            PmagSpecRec["specimen_inc"] = '%7.1f' % (
                                pars["specimen_inc"])
                            PmagSpecRec["specimen_tilt_correction"] = '-1'
                            PmagSpecRec["specimen_direction_type"] = 'l'
                            PmagSpecRec[
                                "direction_type"] = 'l'  # this is redudant, but helpful - won't be imported
                            PmagSpecRec["specimen_dang"] = '%7.1f ' % (
                                pars["specimen_dang"])
                            PmagSpecRec["specimen_drats"] = '%7.1f ' % (
                                pars["specimen_drats"])
                            PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % (
                                pars["specimen_int_ptrm_n"])
                            PmagSpecRec["specimen_rsc"] = '%6.4f ' % (
                                pars["specimen_rsc"])
                            PmagSpecRec["specimen_md"] = '%i ' % (int(
                                pars["specimen_md"]))
                            if PmagSpecRec["specimen_md"] == '-1':
                                PmagSpecRec["specimen_md"] = ""
                            PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % (
                                pars["specimen_b_sigma"])
                            if "IE-TT" not in methcodes:
                                methcodes.append("IE-TT")
                            methods = ""
                            for meth in methcodes:
                                methods = methods + meth + ":"
                            PmagSpecRec["magic_method_codes"] = methods[:-1]
                            PmagSpecRec["specimen_description"] = comment
                            PmagSpecRec[
                                "magic_software_packages"] = version_num
                            pmagplotlib.plotAZ(AZD, araiblock, zijdblock, s,
                                               units[0])
                            pmagplotlib.plotB(AZD, araiblock, zijdblock, pars)
                            if len(trmblock) > 2:
                                blab = field
                                best = pars["specimen_int"]
                                Bs, TRMs = [], []
                                for trec in trmblock:
                                    Bs.append(float(
                                        trec['treatment_dc_field']))
                                    TRMs.append(
                                        float(trec['measurement_magn_moment']))
                                NLpars = nlt.NLtrm(
                                    Bs, TRMs, best, blab, 0
                                )  # calculate best fit parameters through TRM acquisition data, and get new banc
                                Mp, Bp = [], []
                                for k in range(int(max(Bs) * 1e6)):
                                    Bp.append(float(k) * 1e-6)
                                    npred = nlt.TRM(
                                        Bp[-1], NLpars['xopt'][0],
                                        NLpars['xopt']
                                        [1])  # predicted NRM for this field
                                    Mp.append(npred)
                                pmagplotlib.plotTRM(
                                    AZD['MRM'], Bs, TRMs, Bp, Mp, NLpars,
                                    trec['magic_experiment_name'])
                                print 'Banc= ', float(NLpars['banc']) * 1e6
                            pmagplotlib.drawFIGS(AZD)
                            pars["specimen_lab_field_dc"] = field
                            pars["specimen_int"] = -1 * field * pars[
                                "specimen_b"]
                            saveit = raw_input(
                                "Save this interpretation? [y]/n \n")
                            if saveit != 'n':
                                specimen += 1
                                PriorRecs.append(
                                    PmagSpecRec)  # put back an interpretation
                                save_redo(PriorRecs, inspec)
                            ans = ""
                else:
                    specimen += 1
                    if fmt != ".pmag":
                        basename = s + '_microwave' + fmt
                        files = {}
                        for key in AZD.keys():
                            files[key] = s + '_' + key + fmt
                        if pmagplotlib.isServer:
                            black = '#000000'
                            purple = '#800080'
                            titles = {}
                            titles['deremag'] = 'DeReMag Plot'
                            titles['zijd'] = 'Zijderveld Plot'
                            titles['arai'] = 'Arai Plot'
                            AZD = pmagplotlib.addBorders(
                                AZD, titles, black, purple)
                        pmagplotlib.saveP(AZD, files)
    #                   pmagplotlib.combineFigs(s,files,3)
        if len(CurrRec) > 0:
            for rec in CurrRec:
                PriorRecs.append(rec)
        CurrRec = []
    if plots != 1:
        ans = raw_input(" Save last plot? 1/[0] ")
        if ans == "1":
            if fmt != ".pmag":
                files = {}
                for key in AZD.keys():
                    files[key] = s + '_' + key + fmt
                pmagplotlib.saveP(AZD, files)
        if len(CurrRec) > 0:
            PriorRecs.append(CurrRec)  # put back an interpretation
        if len(PriorRecs) > 0:
            save_redo(PriorRecs, inspec)
            print 'Updated interpretations saved in ', inspec
    if pmagplotlib.verbose:
        print "Good bye"
示例#3
0
def main():
    """
    NAME
        thellier_magic_redo.py

    DESCRIPTION
        Calculates paleointensity parameters for thellier-thellier type data using bounds
        stored in the "redo" file

    SYNTAX
        thellier_magic_redo [command line options]

    OPTIONS
        -h prints help message
        -usr USER:   identify user, default is ""
        -fcr CRIT, set criteria for grading
        -f IN: specify input file, default is magic_measurements.txt
        -fre REDO: specify redo file, default is "thellier_redo"
        -F OUT: specify output file, default is thellier_specimens.txt
        -leg:  attaches "Recalculated from original measurements; supercedes published results. " to comment field
        -CR PERC TYPE: apply a blanket cooling rate correction if none supplied in the er_samples.txt file 
            PERC should be a percentage of original (say reduce to 90%)
            TYPE should be one of the following:
               EG (for educated guess); PS (based on pilots); TRM (based on comparison of two TRMs) 
        -ANI:  perform anisotropy correction
        -fsa SAMPFILE: er_samples.txt file with cooling rate correction information, default is NO CORRECTION
        -Fcr  CRout: specify pmag_specimen format file for cooling rate corrected data
        -fan ANIFILE: specify rmag_anisotropy format file, default is rmag_anisotropy.txt 
        -Fac  ACout: specify pmag_specimen format file for anisotropy corrected data
                 default is AC_specimens.txt
        -fnl NLTFILE: specify magic_measurments format file, default is magic_measurements.txt
        -Fnl NLTout: specify pmag_specimen format file for non-linear trm corrected data
                 default is NLT_specimens.txt
        -z use z component differenences for pTRM calculation

    INPUT
        a thellier_redo file is Specimen_name Tmin Tmax (where Tmin and Tmax are in Centigrade)
    """
    dir_path = '.'
    critout = ""
    version_num = pmag.get_version()
    field, first_save = -1, 1
    spec, recnum, start, end = 0, 0, 0, 0
    crfrac = 0
    NltRecs, PmagSpecs, AniSpecRecs, NltSpecRecs, CRSpecs = [], [], [], [], []
    meas_file, pmag_file, mk_file = "magic_measurements.txt", "thellier_specimens.txt", "thellier_redo"
    anis_file = "rmag_anisotropy.txt"
    anisout, nltout = "AC_specimens.txt", "NLT_specimens.txt"
    crout = "CR_specimens.txt"
    nlt_file = ""
    samp_file = ""
    comment, user = "", "unknown"
    anis, nltrm = 0, 0
    jackknife = 0  # maybe in future can do jackknife
    args = sys.argv
    Zdiff = 0
    if '-WD' in args:
        ind = args.index('-WD')
        dir_path = args[ind + 1]
    if "-h" in args:
        print main.__doc__
        sys.exit()
    if "-usr" in args:
        ind = args.index("-usr")
        user = sys.argv[ind + 1]
    if "-leg" in args:
        comment = "Recalculated from original measurements; supercedes published results. "
    cool = 0
    if "-CR" in args:
        cool = 1
        ind = args.index("-CR")
        crfrac = .01 * float(sys.argv[ind + 1])
        crtype = 'DA-CR-' + sys.argv[ind + 2]
    if "-Fcr" in args:
        ind = args.index("-Fcr")
        crout = sys.argv[ind + 1]
    if "-f" in args:
        ind = args.index("-f")
        meas_file = sys.argv[ind + 1]
    if "-F" in args:
        ind = args.index("-F")
        pmag_file = sys.argv[ind + 1]
    if "-fre" in args:
        ind = args.index("-fre")
        mk_file = args[ind + 1]
    if "-fsa" in args:
        ind = args.index("-fsa")
        samp_file = dir_path + '/' + args[ind + 1]
        Samps, file_type = pmag.magic_read(samp_file)
        SampCRs = pmag.get_dictitem(
            Samps, 'cooling_rate_corr', '',
            'F')  # get samples cooling rate corrections
        cool = 1
        if file_type != 'er_samples':
            print 'not a valid er_samples.txt file'
            sys.exit()
    #
    #
    if "-ANI" in args:
        anis = 1
        ind = args.index("-ANI")
        if "-Fac" in args:
            ind = args.index("-Fac")
            anisout = args[ind + 1]
        if "-fan" in args:
            ind = args.index("-fan")
            anis_file = args[ind + 1]
    #
    if "-NLT" in args:
        if "-Fnl" in args:
            ind = args.index("-Fnl")
            nltout = args[ind + 1]
        if "-fnl" in args:
            ind = args.index("-fnl")
            nlt_file = args[ind + 1]
    if "-z" in args: Zdiff = 1
    if '-fcr' in sys.argv:
        ind = args.index("-fcr")
        critout = sys.argv[ind + 1]
#
#  start reading in data:
#
    meas_file = dir_path + "/" + meas_file
    mk_file = dir_path + "/" + mk_file
    accept = pmag.default_criteria(1)[0]  # set criteria to none
    if critout != "":
        critout = dir_path + "/" + critout
        crit_data, file_type = pmag.magic_read(critout)
        if file_type != 'pmag_criteria':
            print 'bad pmag_criteria file, using no acceptance criteria'
        print "Acceptance criteria read in from ", critout
        for critrec in crit_data:
            if 'sample_int_sigma_uT' in critrec.keys(
            ):  # accommodate Shaar's new criterion
                critrec['sample_int_sigma'] = '%10.3e' % (
                    eval(critrec['sample_int_sigma_uT']) * 1e-6)
            for key in critrec.keys():
                if key not in accept.keys() and critrec[key] != '':
                    accept[key] = critrec[key]
    meas_data, file_type = pmag.magic_read(meas_file)
    if file_type != 'magic_measurements':
        print file_type
        print file_type, "This is not a valid magic_measurements file "
        sys.exit()
    try:
        mk_f = open(mk_file, 'rU')
    except:
        print "Bad redo file"
        sys.exit()
    mkspec = []
    speclist = []
    for line in mk_f.readlines():
        tmp = line.split()
        mkspec.append(tmp)
        speclist.append(tmp[0])
    if anis == 1:
        anis_file = dir_path + "/" + anis_file
        anis_data, file_type = pmag.magic_read(anis_file)
        if file_type != 'rmag_anisotropy':
            print file_type
            print file_type, "This is not a valid rmag_anisotropy file "
            sys.exit()
    if nlt_file == "":
        nlt_data = pmag.get_dictitem(
            meas_data, 'magic_method_codes', 'LP-TRM',
            'has')  # look for trm acquisition data in the meas_data file
    else:
        nlt_file = dir_path + "/" + nlt_file
        nlt_data, file_type = pmag.magic_read(nlt_file)
    if len(nlt_data) > 0:
        nltrm = 1


#
# sort the specimen names and step through one by one
#
    sids = pmag.get_specs(meas_data)
    #
    print 'Processing ', len(speclist), ' specimens - please wait '
    while spec < len(speclist):
        s = speclist[spec]
        recnum = 0
        datablock = []
        PmagSpecRec = {}
        PmagSpecRec["er_analyst_mail_names"] = user
        PmagSpecRec["er_citation_names"] = "This study"
        PmagSpecRec["magic_software_packages"] = version_num
        methcodes, inst_code = [], ""
        #
        # find the data from the meas_data file for this specimen
        #
        datablock = pmag.get_dictitem(meas_data, 'er_specimen_name', s, 'T')
        datablock = pmag.get_dictitem(
            datablock, 'magic_method_codes', 'LP-PI-TRM',
            'has')  #pick out the thellier experiment data
        if len(datablock) > 0:
            for rec in datablock:
                if "magic_instrument_codes" not in rec.keys():
                    rec["magic_instrument_codes"] = "unknown"
    #
    #  collect info for the PmagSpecRec dictionary
    #
            rec = datablock[0]
            PmagSpecRec["er_specimen_name"] = s
            PmagSpecRec["er_sample_name"] = rec["er_sample_name"]
            PmagSpecRec["er_site_name"] = rec["er_site_name"]
            PmagSpecRec["er_location_name"] = rec["er_location_name"]
            PmagSpecRec["measurement_step_unit"] = "K"
            PmagSpecRec["specimen_correction"] = 'u'
            if "er_expedition_name" in rec.keys():
                PmagSpecRec["er_expedition_name"] = rec["er_expedition_name"]
            if "magic_instrument_codes" not in rec.keys():
                PmagSpecRec["magic_instrument_codes"] = "unknown"
            else:
                PmagSpecRec["magic_instrument_codes"] = rec[
                    "magic_instrument_codes"]
            if "magic_experiment_name" not in rec.keys():
                rec["magic_experiment_name"] = ""
            else:
                PmagSpecRec["magic_experiment_names"] = rec[
                    "magic_experiment_name"]
            meths = rec["magic_experiment_name"].split(":")
            for meth in meths:
                if meth.strip() not in methcodes and "LP-" in meth:
                    methcodes.append(meth.strip())
    #
    # sort out the data into first_Z, first_I, ptrm_check, ptrm_tail
    #
            araiblock, field = pmag.sortarai(datablock, s, Zdiff)
            first_Z = araiblock[0]
            first_I = araiblock[1]
            ptrm_check = araiblock[2]
            ptrm_tail = araiblock[3]
            if len(first_I) < 3 or len(first_Z) < 4:
                spec += 1
                print 'skipping specimen ', s
            else:
                #
                # get start, end
                #
                for redospec in mkspec:
                    if redospec[0] == s:
                        b, e = float(redospec[1]), float(redospec[2])
                        break
                if e > float(first_Z[-1][0]): e = float(first_Z[-1][0])
                for recnum in range(len(first_Z)):
                    if first_Z[recnum][0] == b: start = recnum
                    if first_Z[recnum][0] == e: end = recnum
                nsteps = end - start
                if nsteps > 2:
                    zijdblock, units = pmag.find_dmag_rec(s, meas_data)
                    pars, errcode = pmag.PintPars(datablock, araiblock,
                                                  zijdblock, start, end,
                                                  accept)
                    if 'specimen_scat' in pars.keys():
                        PmagSpecRec['specimen_scat'] = pars['specimen_scat']
                    if 'specimen_frac' in pars.keys():
                        PmagSpecRec['specimen_frac'] = '%5.3f' % (
                            pars['specimen_frac'])
                    if 'specimen_gmax' in pars.keys():
                        PmagSpecRec['specimen_gmax'] = '%5.3f' % (
                            pars['specimen_gmax'])
                    pars['measurement_step_unit'] = units
                    pars["specimen_lab_field_dc"] = field
                    pars["specimen_int"] = -1 * field * pars["specimen_b"]
                    PmagSpecRec["measurement_step_min"] = '%8.3e' % (
                        pars["measurement_step_min"])
                    PmagSpecRec["measurement_step_max"] = '%8.3e' % (
                        pars["measurement_step_max"])
                    PmagSpecRec["specimen_int_n"] = '%i' % (
                        pars["specimen_int_n"])
                    PmagSpecRec["specimen_lab_field_dc"] = '%8.3e' % (
                        pars["specimen_lab_field_dc"])
                    PmagSpecRec["specimen_int"] = '%9.4e ' % (
                        pars["specimen_int"])
                    PmagSpecRec["specimen_b"] = '%5.3f ' % (pars["specimen_b"])
                    PmagSpecRec["specimen_q"] = '%5.1f ' % (pars["specimen_q"])
                    PmagSpecRec["specimen_f"] = '%5.3f ' % (pars["specimen_f"])
                    PmagSpecRec["specimen_fvds"] = '%5.3f' % (
                        pars["specimen_fvds"])
                    PmagSpecRec["specimen_b_beta"] = '%5.3f' % (
                        pars["specimen_b_beta"])
                    PmagSpecRec["specimen_int_mad"] = '%7.1f' % (
                        pars["specimen_int_mad"])
                    PmagSpecRec["specimen_Z"] = '%7.1f' % (pars["specimen_Z"])
                    PmagSpecRec["specimen_gamma"] = '%7.1f' % (
                        pars["specimen_gamma"])
                    if pars["method_codes"] != "" and pars[
                            "method_codes"] not in methcodes:
                        methcodes.append(pars["method_codes"])
                    PmagSpecRec["specimen_dec"] = '%7.1f' % (
                        pars["specimen_dec"])
                    PmagSpecRec["specimen_inc"] = '%7.1f' % (
                        pars["specimen_inc"])
                    PmagSpecRec["specimen_tilt_correction"] = '-1'
                    PmagSpecRec["specimen_direction_type"] = 'l'
                    PmagSpecRec[
                        "direction_type"] = 'l'  # this is redudant, but helpful - won't be imported
                    PmagSpecRec["specimen_dang"] = '%7.1f ' % (
                        pars["specimen_dang"])
                    PmagSpecRec["specimen_drats"] = '%7.1f ' % (
                        pars["specimen_drats"])
                    PmagSpecRec["specimen_drat"] = '%7.1f ' % (
                        pars["specimen_drat"])
                    PmagSpecRec["specimen_int_ptrm_n"] = '%i ' % (
                        pars["specimen_int_ptrm_n"])
                    PmagSpecRec["specimen_rsc"] = '%6.4f ' % (
                        pars["specimen_rsc"])
                    PmagSpecRec["specimen_md"] = '%i ' % (int(
                        pars["specimen_md"]))
                    if PmagSpecRec["specimen_md"] == '-1':
                        PmagSpecRec["specimen_md"] = ""
                    PmagSpecRec["specimen_b_sigma"] = '%5.3f ' % (
                        pars["specimen_b_sigma"])
                    if "IE-TT" not in methcodes: methcodes.append("IE-TT")
                    methods = ""
                    for meth in methcodes:
                        methods = methods + meth + ":"
                    PmagSpecRec["magic_method_codes"] = methods.strip(':')
                    PmagSpecRec["magic_software_packages"] = version_num
                    PmagSpecRec["specimen_description"] = comment
                    if critout != "":
                        kill = pmag.grade(PmagSpecRec, accept, 'specimen_int')
                        if len(kill) > 0:
                            Grade = 'F'  # fails
                        else:
                            Grade = 'A'  # passes
                        PmagSpecRec["specimen_grade"] = Grade
                    else:
                        PmagSpecRec["specimen_grade"] = ""  # not graded
                    if nltrm == 0 and anis == 0 and cool != 0:  # apply cooling rate correction
                        SCR = pmag.get_dictitem(
                            SampCRs, 'er_sample_name',
                            PmagSpecRec['er_sample_name'],
                            'T')  # get this samples, cooling rate correction
                        CrSpecRec = pmag.cooling_rate(PmagSpecRec, SCR, crfrac,
                                                      crtype)
                        if CrSpecRec['er_specimen_name'] != 'none':
                            CrSpecs.append(CrSpecRec)
                    PmagSpecs.append(PmagSpecRec)
                    NltSpecRec = ""
                    #
                    # check on non-linear TRM correction
                    #
                    if nltrm == 1:
                        #
                        # find the data from the nlt_data list for this specimen
                        #
                        TRMs, Bs = [], []
                        NltSpecRec = ""
                        NltRecs = pmag.get_dictitem(
                            nlt_data, 'er_specimen_name',
                            PmagSpecRec['er_specimen_name'], 'has'
                        )  # fish out all the NLT data for this specimen
                        if len(NltRecs) > 2:
                            for NltRec in NltRecs:
                                Bs.append(float(NltRec['treatment_dc_field']))
                                TRMs.append(
                                    float(NltRec['measurement_magn_moment']))
                            NLTpars = nlt.NLtrm(
                                Bs, TRMs, float(PmagSpecRec['specimen_int']),
                                float(PmagSpecRec['specimen_lab_field_dc']), 0)
                            if NLTpars['banc'] > 0:
                                NltSpecRec = {}
                                for key in PmagSpecRec.keys():
                                    NltSpecRec[key] = PmagSpecRec[key]
                                NltSpecRec['specimen_int'] = '%9.4e' % (
                                    NLTpars['banc'])
                                NltSpecRec['magic_method_codes'] = PmagSpecRec[
                                    "magic_method_codes"] + ":DA-NL"
                                NltSpecRec["specimen_correction"] = 'c'
                                NltSpecRec['specimen_grade'] = PmagSpecRec[
                                    'specimen_grade']
                                NltSpecRec[
                                    "magic_software_packages"] = version_num
                                print NltSpecRec[
                                    'er_specimen_name'], ' Banc= ', float(
                                        NLTpars['banc']) * 1e6
                                if anis == 0 and cool != 0:
                                    SCR = pmag.get_dictitem(
                                        SampCRs, 'er_sample_name',
                                        NltSpecRec['er_sample_name'], 'T'
                                    )  # get this samples, cooling rate correction
                                    CrSpecRec = pmag.cooling_rate(
                                        NltSpecRec, SCR, crfrac, crtype)
                                    if CrSpecRec['er_specimen_name'] != 'none':
                                        CrSpecs.append(CrSpecRec)
                                NltSpecRecs.append(NltSpecRec)
    #
    # check on anisotropy correction
                        if anis == 1:
                            if NltSpecRec != "":
                                Spc = NltSpecRec
                            else:  # find uncorrected data
                                Spc = PmagSpecRec
                            AniSpecs = pmag.get_dictitem(
                                anis_data, 'er_specimen_name',
                                PmagSpecRec['er_specimen_name'], 'T')
                            if len(AniSpecs) > 0:
                                AniSpec = AniSpecs[0]
                                AniSpecRec = pmag.doaniscorr(Spc, AniSpec)
                                AniSpecRec['specimen_grade'] = PmagSpecRec[
                                    'specimen_grade']
                                AniSpecRec[
                                    "magic_instrument_codes"] = PmagSpecRec[
                                        'magic_instrument_codes']
                                AniSpecRec["specimen_correction"] = 'c'
                                AniSpecRec[
                                    "magic_software_packages"] = version_num
                                if cool != 0:
                                    SCR = pmag.get_dictitem(
                                        SampCRs, 'er_sample_name',
                                        AniSpecRec['er_sample_name'], 'T'
                                    )  # get this samples, cooling rate correction
                                    CrSpecRec = pmag.cooling_rate(
                                        AniSpecRec, SCR, crfrac, crtype)
                                    if CrSpecRec['er_specimen_name'] != 'none':
                                        CrSpecs.append(CrSpecRec)
                                AniSpecRecs.append(AniSpecRec)
                    elif anis == 1:
                        AniSpecs = pmag.get_dictitem(
                            anis_data, 'er_specimen_name',
                            PmagSpecRec['er_specimen_name'], 'T')
                        if len(AniSpecs) > 0:
                            AniSpec = AniSpecs[0]
                            AniSpecRec = pmag.doaniscorr(PmagSpecRec, AniSpec)
                            AniSpecRec['specimen_grade'] = PmagSpecRec[
                                'specimen_grade']
                            AniSpecRec["magic_instrument_codes"] = PmagSpecRec[
                                "magic_instrument_codes"]
                            AniSpecRec["specimen_correction"] = 'c'
                            AniSpecRec["magic_software_packages"] = version_num
                            if crfrac != 0:
                                CrSpecRec = {}
                                for key in AniSpecRec.keys():
                                    CrSpecRec[key] = AniSpecRec[key]
                                inten = frac * float(CrSpecRec['specimen_int'])
                                CrSpecRec["specimen_int"] = '%9.4e ' % (
                                    inten
                                )  # adjust specimen intensity by cooling rate correction
                                CrSpecRec['magic_method_codes'] = CrSpecRec[
                                    'magic_method_codes'] + ':DA-CR-' + crtype
                                CRSpecs.append(CrSpecRec)
                            AniSpecRecs.append(AniSpecRec)
                spec += 1
        else:
            print "skipping ", s
            spec += 1
    pmag_file = dir_path + '/' + pmag_file
    pmag.magic_write(pmag_file, PmagSpecs, 'pmag_specimens')
    print 'uncorrected thellier data saved in: ', pmag_file
    if anis == 1 and len(AniSpecRecs) > 0:
        anisout = dir_path + '/' + anisout
        pmag.magic_write(anisout, AniSpecRecs, 'pmag_specimens')
        print 'anisotropy corrected data saved in: ', anisout
    if nltrm == 1 and len(NltSpecRecs) > 0:
        nltout = dir_path + '/' + nltout
        pmag.magic_write(nltout, NltSpecRecs, 'pmag_specimens')
        print 'non-linear TRM corrected data saved in: ', nltout
    if crfrac != 0:
        crout = dir_path + '/' + crout
        pmag.magic_write(crout, CRSpecs, 'pmag_specimens')
        print 'cooling rate corrected data saved in: ', crout
示例#4
0
def main():
    """
    NAME
        thellier_magic.py

    DESCRIPTION
        plots Thellier-Thellier data in version 3.0 format
        Reads saved interpretations from a specimen formatted table, default: specimens.txt

    SYNTAX
        thellier_magic.py [command line options]

    OPTIONS
        -h prints help message and quits
        -f MEAS, set measurements input file, default is 'measurements.txt'
        -fsp PRIOR, set specimens.txt prior interpretations file, default is 'specimens.txt'
        -fcr CRIT, set criteria file for grading.  # not yet implemented
        -fmt [svg,png,jpg], format for images - default is svg
        -sav,  saves plots with out review (in format specified by -fmt key or default)
        -spc SPEC, plots single specimen SPEC, saves plot with specified format
            with optional -b bounds and quits
        -b BEG END: sets  bounds for calculation
           BEG: starting step number for slope calculation
           END: ending step number for slope calculation
        -z use only z component difference for pTRM calculation

    OUTPUT
        figures:
            ALL:  numbers refer to temperature steps in command line window
            1) Arai plot:  closed circles are zero-field first/infield
                           open circles are infield first/zero-field
                           triangles are pTRM checks
                           squares are pTRM tail checks
                           VDS is vector difference sum
                           diamonds are bounds for interpretation
            2) Zijderveld plot:  closed (open) symbols are X-Y (X-Z) planes
                                 X rotated to NRM direction
            3) (De/Re)Magnetization diagram:
                           circles are NRM remaining
                           squares are pTRM gained
            4) equal area projections:
               green triangles are pTRM gained direction
                           red (purple) circles are lower(upper) hemisphere of ZI step directions
                           blue (cyan) squares are lower(upper) hemisphere IZ step directions
            5) Optional:  TRM acquisition
            6) Optional: TDS normalization
        command line window:
            list is: temperature step numbers, temperatures (C), Dec, Inc, Int (units of measuements)
                     list of possible commands: type letter followed by return to select option
                     saving of plots creates image files with specimen, plot type as name
    """
    #
    #   initializations
    #
    version_num = pmag.get_version()
    verbose = pmagplotlib.verbose
    #
    # default acceptance criteria
    #
    accept = pmag.default_criteria(0)[0]  # set the default criteria
    #
    # parse command line options
    #
    plots, fmt, Zdiff = 0, 'svg', 0
    if '-h' in sys.argv:
        print(main.__doc__)
        sys.exit()
    dir_path = pmag.get_named_arg_from_sys("-WD", default_val=os.getcwd())
    meas_file = pmag.get_named_arg_from_sys("-f",
                                            default_val="measurements.txt")
    spec_file = pmag.get_named_arg_from_sys("-fsp",
                                            default_val="specimens.txt")
    crit_file = pmag.get_named_arg_from_sys("-fcr", default_val="criteria.txt")
    spec_file = os.path.join(dir_path, spec_file)
    meas_file = os.path.join(dir_path, meas_file)
    crit_file = os.path.join(dir_path, crit_file)
    fmt = pmag.get_named_arg_from_sys("-fmt", "svg")
    if '-sav' in sys.argv: plots, verbose = 1, 0
    if '-z' in sys.argv: Zdiff = 1
    specimen = pmag.get_named_arg_from_sys("-spc", default_val="")
    if '-b' in sys.argv:
        ind = sys.argv.index('-b')
        start = int(sys.argv[ind + 1])
        end = int(sys.argv[ind + 2])
    else:
        start, end = "", ""
    fnames = {
        'measurements': meas_file,
        'specimens': spec_file,
        'criteria': crit_file
    }
    contribution = nb.Contribution(
        dir_path,
        custom_filenames=fnames,
        read_tables=['measurements', 'specimens', 'criteria'])
    #
    #   import  prior interpretations  from specimen file
    #
    specimen_cols = [
        'analysts', 'aniso_ftest', 'aniso_ftest12', 'aniso_ftest23', 'aniso_s',
        'aniso_s_mean', 'aniso_s_n_measurements', 'aniso_s_sigma',
        'aniso_s_unit', 'aniso_tilt_correction', 'aniso_type', 'aniso_v1',
        'aniso_v2', 'aniso_v3', 'citations', 'description', 'dir_alpha95',
        'dir_comp', 'dir_dec', 'dir_inc', 'dir_mad_free', 'dir_n_measurements',
        'dir_tilt_correction', 'experiments', 'geologic_classes',
        'geologic_types', 'hyst_bc', 'hyst_bcr', 'hyst_mr_moment',
        'hyst_ms_moment', 'int_abs', 'int_b', 'int_b_beta', 'int_b_sigma',
        'int_corr', 'int_dang', 'int_drats', 'int_f', 'int_fvds', 'int_gamma',
        'int_mad_free', 'int_md', 'int_n_measurements', 'int_n_ptrm', 'int_q',
        'int_rsc', 'int_treat_dc_field', 'lithologies', 'meas_step_max',
        'meas_step_min', 'meas_step_unit', 'method_codes', 'sample',
        'software_packages', 'specimen'
    ]
    if 'specimens' in contribution.tables:
        spec_container = contribution.tables['specimens']
        prior_spec_data = spec_container.get_records_for_code(
            'LP-PI-TRM',
            strict_match=False)  # look up all prior intensity interpretations
    else:
        spec_container, prior_spec_data = None, []
    backup = 0
    #
    Mkeys = ['magn_moment', 'magn_volume', 'magn_mass']
    #
    #   create measurement dataframe
    #
    meas_container = contribution.tables['measurements']
    meas_data = meas_container.df
    #
    meas_data['method_codes'] = meas_data['method_codes'].str.replace(
        " ", "")  # get rid of nasty spaces
    meas_data = meas_data[meas_data['method_codes'].str.contains(
        'LP-PI-TRM|LP-TRM|LP-TRM-TD') ==
                          True]  # fish out zero field steps for plotting
    intensity_types = [
        col_name for col_name in meas_data.columns if col_name in Mkeys
    ]
    int_key = intensity_types[
        0]  # plot first intensity method found - normalized to initial value anyway - doesn't matter which used
    meas_data = meas_data[meas_data[int_key].notnull(
    )]  # get all the non-null intensity records of the same type
    if 'flag' not in meas_data.columns:
        meas_data['flag'] = 'g'  # set the default flag to good
    meas_data = meas_data[meas_data['flag'].str.contains('g') ==
                          True]  # only the 'good' measurements
    thel_data = meas_data[meas_data['method_codes'].str.contains('LP-PI-TRM')
                          == True]  # get all the Thellier data
    trm_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM') ==
                         True]  # get all the TRM acquisition data
    td_data = meas_data[meas_data['method_codes'].str.contains('LP-TRM-TD') ==
                        True]  # get all the TD data
    anis_data = meas_data[meas_data['method_codes'].str.contains('LP-AN') ==
                          True]  # get all the anisotropy data
    #
    # get list of unique specimen names from measurement data
    #
    specimen_names = meas_data.specimen.unique(
    )  # this is a Series of all the specimen names
    specimen_names = specimen_names.tolist()  # turns it into a list
    specimen_names.sort()  # sorts by specimen name
    #
    # set up new DataFrame for this sessions specimen interpretations
    #
    spec_container = nb.MagicDataFrame(dtype='specimens',
                                       columns=specimen_cols)
    current_spec_data = spec_container.df  # this is for interpretations from this session
    if specimen == "":  # do all specimens
        k = 0
    else:
        k = specimen_names.index(specimen)  # just do this one
    # define figure numbers for arai, zijderveld and
    #   de-,re-magnetization diagrams
    AZD = {}
    AZD['deremag'], AZD['zijd'], AZD['arai'], AZD['eqarea'] = 1, 2, 3, 4
    pmagplotlib.plot_init(AZD['arai'], 5, 5)
    pmagplotlib.plot_init(AZD['zijd'], 5, 5)
    pmagplotlib.plot_init(AZD['deremag'], 5, 5)
    pmagplotlib.plot_init(AZD['eqarea'], 5, 5)
    if len(trm_data) > 0:
        AZD['TRM'] = 5
        pmagplotlib.plot_init(AZD['TRM'], 5, 5)
    if len(td_data) > 0:
        AZD['TDS'] = 6
        pmagplotlib.plot_init(AZD['TDS'], 5, 5)
    #
    while k < len(specimen_names):
        this_specimen = specimen_names[
            k]  # set the current specimen for plotting
        if verbose and this_specimen != "":
            print(this_specimen, k + 1, 'out of ', len(specimen_names))
        #
        #    set up datablocks
        #
        thelblock = thel_data[thel_data['specimen'].str.contains(this_specimen)
                              == True]  # fish out this specimen
        trmblock = trm_data[trm_data['specimen'].str.contains(this_specimen) ==
                            True]  # fish out this specimen
        tdsrecs = td_data[td_data['specimen'].str.contains(this_specimen) ==
                          True]  # fish out this specimen
        anisblock = anis_data[anis_data['specimen'].str.contains(this_specimen)
                              == True]  # fish out the anisotropy data
        prior_specimen_interpretations = prior_spec_data[
            prior_spec_data['specimen'].str.contains(
                this_specimen) == True]  # fish out prior interpretation
        #
        # sort data into types
        #
        araiblock, field = pmag.sortarai(thelblock,
                                         this_specimen,
                                         Zdiff,
                                         version=3)
        first_Z = araiblock[0]
        GammaChecks = araiblock[5]
        if len(first_Z) < 3:
            if backup == 0:
                k += 1
                if verbose:
                    print('skipping specimen - moving forward ', this_specimen)
            else:
                k -= 1
                if verbose:
                    print('skipping specimen - moving backward ',
                          this_specimen)
        else:
            backup = 0
            zijdblock, units = pmag.find_dmag_rec(this_specimen,
                                                  thelblock,
                                                  version=3)
            if start == "" and len(prior_specimen_interpretations) > 0:
                if verbose: print('Looking up saved interpretation....')
                #
                # get prior interpretation steps
                #
                beg_int = pd.to_numeric(prior_specimen_interpretations.
                                        meas_step_min.values).tolist()[0]
                end_int = pd.to_numeric(prior_specimen_interpretations.
                                        meas_step_max.values).tolist()[0]
            else:
                beg_int, end_int = "", ""
            recnum = 0
            if verbose: print("index step Dec   Inc  Int       Gamma")
            for plotrec in zijdblock:
                if plotrec[0] == beg_int:
                    start = recnum  # while we are at it, collect these bounds
                if plotrec[0] == end_int: end = recnum
                if verbose:
                    if GammaChecks != "":
                        gamma = ""
                        for g in GammaChecks:
                            if g[0] == plotrec[0] - 273:
                                gamma = g[1]
                                break
                    if gamma != "":
                        print('%i     %i %7.1f %7.1f %8.3e %7.1f' %
                              (recnum, plotrec[0] - 273, plotrec[1],
                               plotrec[2], plotrec[3], gamma))
                    else:
                        print('%i     %i %7.1f %7.1f %8.3e ' %
                              (recnum, plotrec[0] - 273, plotrec[1],
                               plotrec[2], plotrec[3]))
                recnum += 1
            for fig in list(AZD.keys()):
                pmagplotlib.clearFIG(AZD[fig])  # clear all figures
            pmagplotlib.plotAZ(AZD, araiblock, zijdblock, this_specimen,
                               units[0])
            if verbose: pmagplotlib.drawFIGS(AZD)
            pars, errcode = pmag.PintPars(thelblock,
                                          araiblock,
                                          zijdblock,
                                          start,
                                          end,
                                          accept,
                                          version=3)
            pars['measurement_step_unit'] = "K"
            pars['experiment_type'] = 'LP-PI-TRM'
            #
            # work on saving interpretations stuff later
            #
            if errcode != 1:  # no problem in PintPars
                pars["specimen_lab_field_dc"] = field
                pars["specimen_int"] = -1 * field * pars["specimen_b"]
                pars["er_specimen_name"] = this_specimen
                #pars,kill=pmag.scoreit(pars,this_specimen_interpretation,accept,'',verbose) # deal with this later
                pars["specimen_grade"] = 'None'
                pars['measurement_step_min'] = pars['meas_step_min']
                pars['measurement_step_max'] = pars['meas_step_max']
                if pars['measurement_step_unit'] == 'K':
                    outstr = "specimen     Tmin  Tmax  N  lab_field  B_anc  b  q  f(coe)  Fvds  beta  MAD  Dang  Drats  Nptrm  Grade  R  MD%  sigma  Gamma_max \n"
                    pars_out = (this_specimen, (pars["meas_step_min"] - 273),
                                (pars["meas_step_max"] -
                                 273), (pars["specimen_int_n"]),
                                1e6 * (pars["specimen_lab_field_dc"]),
                                1e6 * (pars["specimen_int"]),
                                pars["specimen_b"], pars["specimen_q"],
                                pars["specimen_f"], pars["specimen_fvds"],
                                pars["specimen_b_beta"], pars["int_mad_free"],
                                pars["int_dang"], pars["int_drats"],
                                pars["int_n_ptrm"], pars["specimen_grade"],
                                np.sqrt(pars["specimen_rsc"]),
                                int(pars["int_md"]), pars["specimen_b_sigma"],
                                pars['specimen_gamma'])
                    outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f  %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f' % pars_out + '\n'
                elif pars['measurement_step_unit'] == 'J':
                    outstr = "specimen     Wmin  Wmax  N  lab_field  B_anc  b  q  f(coe)  Fvds  beta  MAD  Dang  Drats  Nptrm  Grade  R  MD%  sigma  ThetaMax DeltaMax GammaMax\n"
                    pars_out = (
                        this_specimen, (pars["meas_step_min"]),
                        (pars["meas_step_max"]), (pars["specimen_int_n"]),
                        1e6 * (pars["specimen_lab_field_dc"]),
                        1e6 * (pars["specimen_int"]), pars["specimen_b"],
                        pars["specimen_q"], pars["specimen_f"],
                        pars["specimen_fvds"], pars["specimen_b_beta"],
                        pars["specimen_int_mad"], pars["specimen_int_dang"],
                        pars["specimen_drats"], pars["specimen_int_ptrm_n"],
                        pars["specimen_grade"], np.sqrt(pars["specimen_rsc"]),
                        int(pars["specimen_md"]), pars["specimen_b_sigma"],
                        pars["specimen_theta"], pars["specimen_delta"],
                        pars["specimen_gamma"])
                    outstring = '%s %4.0f %4.0f %i %4.1f %4.1f %5.3f %5.1f %5.3f %5.3f %5.3f  %7.1f %7.1f %7.1f %s %s %6.3f %i %5.3f %7.1f %7.1f %7.1f' % pars_out + '\n'
                print(outstr)
                print(outstring)
                pmagplotlib.plotB(AZD, araiblock, zijdblock, pars)
                mpars = pmag.domean(araiblock[1], start, end, 'DE-BFL')
                if verbose:
                    pmagplotlib.drawFIGS(AZD)
                    print('pTRM direction= ',
                          '%7.1f' % (mpars['specimen_dec']),
                          ' %7.1f' % (mpars['specimen_inc']), ' MAD:',
                          '%7.1f' % (mpars['specimen_mad']))
            if len(anisblock) > 0:  # this specimen has anisotropy data
                if verbose:
                    print('Found anisotropy record... but ignoring for now ')
            if plots == 1:
                if fmt != "pmag":
                    files = {}
                    for key in list(AZD.keys()):
                        files[
                            key] = 'SP:_' + this_specimen + '_TY:_' + key + '_' + '.' + fmt
                    if pmagplotlib.isServer:
                        black = '#000000'
                        purple = '#800080'
                        titles = {}
                        titles['deremag'] = 'DeReMag Plot'
                        titles['zijd'] = 'Zijderveld Plot'
                        titles['arai'] = 'Arai Plot'
                        titles['TRM'] = 'TRM Acquisition data'
                        AZD = pmagplotlib.addBorders(AZD, titles, black,
                                                     purple)
                    pmagplotlib.saveP(AZD, files)
                else:  # save in pmag format
                    print('pmag format no longer supported')
                    #script="grep "+this_specimen+" output.mag | thellier -mfsi"
                    #script=script+' %8.4e'%(field)
                    #min='%i'%((pars["measurement_step_min"]-273))
                    #Max='%i'%((pars["measurement_step_max"]-273))
                    #script=script+" "+min+" "+Max
                    #script=script+" |plotxy;cat mypost >>thellier.ps\n"
                    #pltf.write(script)
                    #pmag.domagicmag(outf,MeasRecs)
            if specimen != "": sys.exit()  # syonara
            if verbose:
                ans = input('Return for next specimen, q to quit:  ')
                if ans == 'q': sys.exit()
            k += 1  # moving on