def _tune(self, y, period, x=None, metric="mse", val_size=None, verbose=False): """ Tune hyperparameters of the model. :param y: pd.Series or 1-D np.array, time series to predict. :param period: Int or Str, the number of observations per cycle: 1 or "annual" for yearly data, 4 or "quarterly" for quarterly data, 7 or "daily" for daily data, 12 or "monthly" for monthly data, 24 or "hourly" for hourly data, 52 or "weekly" for weekly data. First-letter abbreviations of strings work as well ("a", "q", "d", "m", "h" and "w", respectively). Additional reference: https://robjhyndman.com/hyndsight/seasonal-periods/. :param x: not used for TBATS model :param metric: Str, the metric used for model selection. One of "mse" (mean squared error), "mae" (mean absolute error). :param val_size: Int, the number of most recent observations to use as validation set for tuning. :param verbose: Boolean, True for printing additional info while tuning. :return: None """ self.period = data_utils.period_to_int(period) if type( period) == str else period val_size = int(len(y) * .1) if val_size is None else val_size pipe = pipeline.Pipeline([ ("fourier", FourierFeaturizer( self.period, self.period / 2)), # TODO: Tune no. of Fourier terms as well? ("arima", auto_arima(y, m=self.period, seasonal=False, d=None, information_criterion='oob', maxiter=100, error_action='ignore', suppress_warnings=True, stepwise=True, max_order=None, out_of_sample_size=val_size, scoring=metric, exogenous=x)) ]) self.params.update(pipe.steps[1][1].get_params()) self.params["tuned"] = True
def fit(self, y, period, x=None, metric="mse", val_size=None, verbose=False): """ Build the model using best-tuned hyperparameter values. :param y: pd.Series or 1-D np.array, time series to predict. :param period: Int or Str, the number of observations per cycle: 1 or "annual" for yearly data, 4 or "quarterly" for quarterly data, 7 or "daily" for daily data, 12 or "monthly" for monthly data, 24 or "hourly" for hourly data, 52 or "weekly" for weekly data. First-letter abbreviations of strings work as well ("a", "q", "d", "m", "h" and "w", respectively). Additional reference: https://robjhyndman.com/hyndsight/seasonal-periods/. :param x: pd.DataFrame or 2-D np.array, exogeneous predictors, optional :param metric: Str, the metric used for model selection. One of "mse" (mean squared error), "mae" (mean absolute error). :param val_size: Int, the number of most recent observations to use as validation set for tuning. :param verbose: Boolean, True for printing additional info while tuning. :return: None """ self.y = y self.name = "Fourier ARIMA" self.key = "fourier_sarima" self._tune(y=y, period=period, x=x, metric=metric, val_size=val_size, verbose=verbose) pipe = pipeline.Pipeline([ ("fourier", FourierFeaturizer(self.period, self.period / 2)), ("arima", arima.ARIMA(maxiter=100, order=self.params["order"], seasonal_order=self.params["seasonal_order"], suppress_warnings=True)) ]) self.model = pipe.fit(y, exogenous=x)
vector_serie.append(vector[s]) ##########################################################33 ########## MODELO AUTOARIMA errores_proceso_ar = [] try: # Let's create a pipeline with multiple stages... the Wineind dataset is # seasonal, so we'll include a FourierFeaturizer so we can fit it without # seasonality pipe = pipeline.Pipeline([ ("fourier", ppc.FourierFeaturizer( m=5)), #modela la estacionalidad con periodicidad 5 ( "arima", arima.AutoARIMA( stepwise=True, trace=1, error_action="ignore", seasonal=False, # because we use Fourier suppress_warnings=True)) ]) pipe.fit(train_arima) print("Model fit:") print(pipe) # We can compute predictions the same way we would on a normal ARIMA object: forecast_arima = pipe.predict(n_periods=int(len(test))) rmse_test_arima = mean_squared_error(test_arima, forecast_arima,
import numpy as np import pmdarima as pm from pmdarima import pipeline, preprocessing as ppc, arima from matplotlib import pyplot as plt # Load the data and split it into separate pieces data = pm.datasets.load_wineind() train, test = data[:150], data[150:] # Let's create a pipeline with multiple stages... the Wineind dataset is # seasonal, so we'll include a FourierFeaturizer so we can fit it without # seasonality pipe = pipeline.Pipeline([ ("fourier", ppc.FourierFeaturizer(m=12, k=4)), ("arima", arima.AutoARIMA(stepwise=True, trace=1, error_action="ignore", seasonal=False, # because we use Fourier transparams=False, suppress_warnings=True)) ]) pipe.fit(train) print("Model fit:") print(pipe) # We can compute predictions the same way we would on a normal ARIMA object: preds, conf_int = pipe.predict(n_periods=10, return_conf_int=True) print("\nForecasts:") print(preds) # Let's take a look at the actual vs. the predicted values: fig, axes = plt.subplots(2, 1, figsize=(12, 8))
def Arima(df, dataset, months, var): # if dataset=='iig_maitri' or dataset=='iig_bharati': # data2=pd.read_csv('datasets/'+dataset+'.csv') # # print(df) # elif dataset=='dcwis': # data2=pd.read_csv('datasets/'+dataset+'.csv', names=['obstime', 'tempr', 'ap', 'ws', 'rh', 'dew']) df['obstime'] = pd.to_datetime(df['obstime']) df = df.set_index('obstime') data2 = df[var] # print(data2) # train2, test2= data2[:23423], data2[23423:] # train =train2.resample('M').mean() # ds_temp=df[var].resample('M').mean() if var == 'rh': data2 = data2[data2 > 10] if var == 'ws': data2 = data2[data2 >= 0] if var == 'ap': data2 = data2[data2 > -10] data = data2.resample('M').mean() # print(data) # data.dropna(inplace=True) # train.dropna(inplace=True) # test.dropna(inplace=True) # data['Date']=data.index.strftime('%B') # data['Date']=data['Date']+' '+data.index.strftime('%Y') # data.set_index('Date', inplace=True) # datum=data data.dropna(inplace=True) # print(data.size) ind = list() for i in range(int(data.size)): ind.append(i) # print(data.Date) # print(ind) # Q1 = data.quantile(0.25) # Q3 = data.quantile(0.75) # IQR = Q3 - Q1 # # print(IQR) # data = data[~((data < (Q1 - 1.5 * IQR)) |(data > (Q3 + 1.5 * IQR)))] # data.shape # Let's create a pipeline with multiple stages... the Wineind dataset is # seasonal, so we'll include a FourierFeaturizer so we can fit it without # seasonality pipe = pipeline.Pipeline([ ("fourier", ppc.FourierFeaturizer(m=12)), ( "arima", arima.AutoARIMA( stepwise=True, trace=1, error_action="ignore", seasonal=False, # because we use Fourier transparams=False, suppress_warnings=True)) ]) pipe.fit(data) # print("Model fit:") # # print(pipe) # months=12 dates = [] for year in range(2012, 2016 + int(months / 6)): for month in range(1, 13): dates.append(dt.datetime(year=year, month=month, day=28)) preds, conf_int = pipe.predict(n_periods=months, return_conf_int=True) datum = data data3 = data2.resample('M').mean() # print(dates) # print(data3[dt()'2012-01-31']) # for i, j in zip(data3.index, range(data3.size)): # if math.isnan(data3[i])==True: # del dates[j] # print(datum) temp = np.append(data3, preds) # dates=np.array(dates) # print(np.array(dates).shape) # # print # print(temp.shape) # plt.subplot(211) plt.plot(dates[:temp.size], temp) plt.plot(datum)
data3 = pm.datasets.load_wineind() train, test = data3[:150], data[150:] lenSeq = 10000 subSamp = 40 f0SamplesSS = 10 f0Samples = 400 data.shape data = data[:lenSeq] dataSS = data[::subSamp] with StepwiseContext(max_steps=2): pipe = pipeline.Pipeline([ ("fourier", ppc.FourierFeaturizer(m=f0Samples)), ("arima", arima.AutoARIMA(stepwise=True, maxiter=20, with_intercept = False, start_p=5, start_q=4, max_p= 6, max_q= 6, trace=1, error_action="ignore", seasonal=False, # because we use Fourier suppress_warnings=True)) ]) pipe.fit(data) yhat = pipe.predict(n_periods=1000) #from pyramid.arima import auto_arima #f0Samples = 10 # fs = 44100, f0 = 110 (A2), therefore f0 in samples is approx 400 #thissa = pm.auto_arima(train, error_action='ignore', seasonal=True, m=12) #thissarimaSS = pm.auto_arima(dataSS, with_intercept = False, d = 0, D = 0, start_p=0, start_q=0,test='adf', max_p= 3, max_q= 3, m=f0SamplesSS,start_P=0, start_Q= 0, max_Q=3, max_P=3, trace=True,error_action='ignore', suppress_warnings=True) #thissarimaS1 = pm.auto_arima(data, with_intercept = False, d = 0, D = 0, start_p=0, start_q=0,test='adf', max_p= 3, max_q= 3, m=f0Samples,start_P=0, start_Q= 0, max_Q=3, max_P=3, trace=True,error_action='ignore', suppress_warnings=True) #thissarima = pm.auto_arima(data, with_intercept = False, d = 0, start_p=0, start_q=0,test='adf', max_p= 5, max_q= 5, seasonal=False, trace=True,error_action='ignore', suppress_warnings=True) #paramsSS = thissarimaSS.get_params([0]) #sos = paramsSS.get('seasonal_order')
n_diffs = arima.ndiffs(y_train, max_d=5) # Here's what the featurizer will create for us: date_feat = preprocessing.DateFeaturizer( column_name="date", # the name of the date feature in the exog matrix with_day_of_week=True, with_day_of_month=True) _, X_train_feats = date_feat.fit_transform(y_train, X_train) print("Head of generated exog features:\n%s" % repr(X_train_feats.head())) # We can plug this exog featurizer into a pipeline: pipe = pipeline.Pipeline([ ('date', date_feat), ('arima', arima.AutoARIMA(d=n_diffs, trace=3, stepwise=True, suppress_warnings=True, seasonal=False)) ]) pipe.fit(y_train, X_train) # Plot our forecasts forecasts = pipe.predict(exogenous=X_test) fig = plt.figure(figsize=(16, 8)) ax = fig.add_subplot(1, 1, 1) n_train = y_train.shape[0] x = np.arange(n_train + forecasts.shape[0])