flow = waveform.fpeak - 150 fupp = waveform.fpeak + 150 # Construct the time series for these params waveform.make_wf_timeseries(theta=ext_params.inclination, phi=ext_params.phase) # # Generate IFO data # #print >> sys.stdout, "generating detector data objects..." det1_data = simsig.DetData(det_site="H1", noise_curve='aLIGO', waveform=waveform, ext_params=ext_params, duration=0.5, seed=0, epoch=0.0, f_low=10.0) # -------------------------------------------------------------------- #print 'broad band pre-conditioning snr: ', \ # pycbc.filter.sigma(det1_data.td_signal,det1_data.psd,1000,5000) #print 'f2 pre-conditioning snr: ', \ # pycbc.filter.sigma(det1_data.td_signal,det1_data.psd,flow,fupp) # --- high-pass high_pass = 1 knee = 1000 if high_pass:
# Construct the time series for these params waveform.reproject_waveform(theta=ext_params.inclination, phi=ext_params.phase) # ----------------- # # Generate IFO data # ts=time.time() print >> sys.stdout, "generating detector responses & noise..." det1_data = simsig.DetData(det_site=cp.get('analysis','ifo1'), noise_curve=cp.get('analysis','noise-curve'), waveform=waveform, ext_params=ext_params, duration=datalen, seed=seed, epoch=epoch, f_low=flow, taper=cp.getboolean('analysis','taper-inspiral'), target_snr=target_snr) # Compute optimal SNR for injection det1_optSNR=pycbc.filter.sigma(det1_data.td_signal, psd=det1_data.psd, low_frequency_cutoff=flow, high_frequency_cutoff=0.5*srate) det1_hrss=pycbc.filter.sigma(det1_data.td_signal, low_frequency_cutoff=flow, high_frequency_cutoff=0.5*srate) te=time.time() print >> sys.stdout, "Injected SNR=%.2f"%det1_optSNR print >> sys.stdout, "...data generation took %f sec"%(te-ts)