temp_data, time_slice, train, cluster_radius = init_data( time_slice, train, region, cluster_radius, filter_count) axis_pois, axis_users, train_structure_data, poi_adjacent_list, recommends, unknow_poi_set = preprocess( temp_data, time_slice, train, cluster_radius, order) print "train_structure_data: ", train_structure_data print "poi_adjacent_list: ", poi_adjacent_list print "recommends: ", recommends print "unknow_poi_set: ", unknow_poi_set tensor = trans(train_structure_data, poi_adjacent_list, order, len(axis_pois), len(axis_users), time_slice) # print "transition tensor: ", tensor U, S, D = HOSVD(numpy.array(tensor), 0.7) A = reconstruct(S, U) print "reconstruct tensor: ", A print frobenius_norm(tensor - A) avg_precision, avg_recall, avg_f1_score, availability = recommend( A, recommends, unknow_poi_set, time_slice, top_k, order) print "avg_precision, avg_recall, avg_f1_score, availability: ", avg_precision, avg_recall, avg_f1_score, availability # y_values1.append(sparsity(tensor)) # y_values2.append(sparsity(A)) y_values3.append(avg_precision) y_values4.append(avg_recall) y_values5.append(avg_f1_score) x_values.append(cluster_radius) cluster_radius += 0.05
filter_count = 30 order = 2 top_k = 1 length, height, top_left = get_length_height(region) print "区域(长度,宽度):", length, height # pmpt temp_data, time_slice, train, cluster_radius = init_data( time_slice, train, region, cluster_radius, filter_count) axis_pois, axis_users, train_structure_data, poi_adjacent_list, recommends, unknow_poi_set = preprocess( temp_data, time_slice, train, cluster_radius, order) tensor = trans(train_structure_data, poi_adjacent_list, order, len(axis_pois), len(axis_users), time_slice) U, S, D = HOSVD(numpy.array(tensor), 0.7) A = reconstruct(S, U) # factorized markov chain temp_data2, time_slice, train2 = init_data2(region, train, time_slice, filter_count) axis_pois2, axis_users2, train_structure_data2, recommends2, unknow_poi_set2 = preprocess2( temp_data2, time_slice, train2, order) A2 = trans2(train_structure_data2, order, len(axis_pois2), time_slice, 0.7) # tensor factorization temp_data3, time_slice, train3 = init_data3(time_slice, train, region, filter_count) axis_pois3, axis_users3, train_structure_data3, recommends3, unknow_poi_set3 = preprocess3( temp_data3, time_slice, train3, order) tensor3 = trans3(train_structure_data3, order, len(axis_pois3), len(axis_users3), time_slice)
# region = (39.88, 40.05, 116.05, 116.26) region = (39.88, 40.05, 116.05, 116.26) cluster_radius = 1 filter_count = 30 order = 2 top_k = 1 length, height, top_left = get_length_height(region) print "区域(长度,宽度):", length, height # pmpt temp_data, time_slice, train, cluster_radius = init_data(time_slice, train, region, cluster_radius, filter_count) axis_pois, axis_users, train_structure_data, poi_adjacent_list, recommends, unknow_poi_set = preprocess(temp_data, time_slice, train, cluster_radius, order) tensor = trans(train_structure_data, poi_adjacent_list, order, len(axis_pois), len(axis_users), time_slice) U, S, D = HOSVD(numpy.array(tensor), 0.7) A = reconstruct(S, U) # factorized markov chain temp_data2, time_slice, train2 = init_data2(region, train, time_slice, filter_count) axis_pois2, axis_users2, train_structure_data2, recommends2, unknow_poi_set2 = preprocess2(temp_data2, time_slice, train2, order) A2 = trans2(train_structure_data2, order, len(axis_pois2), time_slice, 0.7) # tensor factorization temp_data3, time_slice, train3 = init_data3(time_slice, train, region, filter_count) axis_pois3, axis_users3, train_structure_data3, recommends3, unknow_poi_set3 = preprocess3(temp_data3, time_slice, train3, order) tensor3 = trans3(train_structure_data3, order, len(axis_pois3), len(axis_users3), time_slice) U3, S3, D3 = HOSVD(numpy.array(tensor3), 0.7) A3 = reconstruct(S3, U3) x_values = [] y_values1 = []
# print frobenius_norm(tensor-A) # time_slice_range = (1, 2, 4, 6, 12) # index = 0 x_values = [] y_values1 = [] y_values2 = [] y_values3 = [] y_values4 = [] while step <= 4: res_tensor = n_step_tensor(tensor, step) U, S, D = HOSVD(numpy.array(res_tensor), 0.7) A = reconstruct(S, U) avg_precision, avg_recall, avg_f1_score, availability = recommend(A, recommends[step], unknow_poi_set, time_slice, top_k, order) print "avg_precision: ", avg_precision print "avg_recall: ", avg_recall print "avg_f1_score: ", avg_f1_score print "availability: ", availability y_values1.append(avg_precision) y_values2.append(avg_recall) y_values3.append(avg_f1_score) y_values4.append(availability) x_values.append(step) step += 1 pylab.plot(x_values, y_values1, 'rs', linewidth=1, linestyle="-", label=u"准确率")