def test_003(self): offsets = (6, 3, 8) key = pmt.string_to_symbol('key') srcid = pmt.string_to_symbol('qa_tag_utils') tags = [] for k in offsets: t = gr.tag_t() t.offset = k t.key = key t.value = pmt.from_long(k) t.srcid = srcid tags.append(t) for k, t in zip(sorted(offsets), sorted(tags, key=gr.tag_t_offset_compare_key())): self.assertEqual(t.offset, k) self.assertTrue(pmt.equal(t.key, key)) self.assertTrue(pmt.equal(t.value, pmt.from_long(k))) self.assertTrue(pmt.equal(t.srcid, srcid)) tmin = min(tags, key=gr.tag_t_offset_compare_key()) self.assertEqual(tmin.offset, min(offsets)) self.assertTrue(pmt.equal(tmin.key, key)) self.assertTrue(pmt.equal(tmin.value, pmt.from_long(min(offsets)))) self.assertTrue(pmt.equal(tmin.srcid, srcid)) tmax = max(tags, key=gr.tag_t_offset_compare_key()) self.assertEqual(tmax.offset, max(offsets)) self.assertTrue(pmt.equal(tmax.key, key)) self.assertTrue(pmt.equal(tmax.value, pmt.from_long(max(offsets)))) self.assertTrue(pmt.equal(tmax.srcid, srcid))
def start(self): self.F = open(self.filename, 'rb') self.F.seek(0, os.SEEK_END) (s,l) = (0,self.F.tell()/self.itemsize) self.message_port_pub(pmt.intern("file_range"), pmt.cons(pmt.from_long(s),pmt.from_long(l))) return True
def test_003_12bits_formatter_object (self): # 3 PDUs: | | | | data = (1, 2, 3, 4, 1, 2, 1, 2, 3, 4) tagname = "packet_len" tag1 = gr.tag_t() tag1.offset = 0 tag1.key = pmt.string_to_symbol(tagname) tag1.value = pmt.from_long(4) tag2 = gr.tag_t() tag2.offset = 4 tag2.key = pmt.string_to_symbol(tagname) tag2.value = pmt.from_long(2) tag3 = gr.tag_t() tag3.offset = 6 tag3.key = pmt.string_to_symbol(tagname) tag3.value = pmt.from_long(4) src = blocks.vector_source_b(data, False, 1, (tag1, tag2, tag3)) formatter_object = digital.packet_header_default(12, tagname) header = digital.packet_headergenerator_bb(formatter_object.formatter(), tagname) sink = blocks.vector_sink_b() self.tb.connect(src, header, sink) self.tb.run() expected_data = ( 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) self.assertEqual(sink.data(), expected_data)
def test_005_packet_len_tag (self): """ Standard test """ fft_len = 16 tx_symbols = range(1, 16); tx_symbols = (0, 1, 1j, 2, 3, 0, 0, 0, 0, 0, 0, 4, 5, 2j, 6, 0, 0, 7, 8, 3j, 9, 0, 0, 0, 0, 0, 0, 10, 4j, 11, 12, 0, 0, 13, 1j, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 2j, 0, 0) expected_result = tuple(range(1, 16)) occupied_carriers = ((1, 3, 4, 11, 12, 14), (1, 2, 4, 11, 13, 14),) n_syms = len(tx_symbols)/fft_len tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(n_syms) tag2 = gr.tag_t() tag2.offset = 0 tag2.key = pmt.string_to_symbol("packet_len") tag2.value = pmt.from_long(len(expected_result)) src = blocks.vector_source_c(tx_symbols, False, fft_len, (tag, tag2)) serializer = digital.ofdm_serializer_vcc(fft_len, occupied_carriers, tag_name, "packet_len", 0, "", False) sink = blocks.vector_sink_c() self.tb.connect(src, serializer, sink) self.tb.run () self.assertEqual(sink.data(), expected_result) self.assertEqual(len(sink.tags()), 1) result_tag = sink.tags()[0] self.assertEqual(pmt.symbol_to_string(result_tag.key), "packet_len") self.assertEqual(pmt.to_long(result_tag.value), len(expected_result))
def test_004_8bits_formatter_ofdm (self): occupied_carriers = ((1, 2, 3, 5, 6, 7),) # 3 PDUs: | | | | data = (1, 2, 3, 4, 1, 2, 1, 2, 3, 4) tagname = "packet_len" tag1 = gr.tag_t() tag1.offset = 0 tag1.key = pmt.string_to_symbol(tagname) tag1.value = pmt.from_long(4) tag2 = gr.tag_t() tag2.offset = 4 tag2.key = pmt.string_to_symbol(tagname) tag2.value = pmt.from_long(2) tag3 = gr.tag_t() tag3.offset = 6 tag3.key = pmt.string_to_symbol(tagname) tag3.value = pmt.from_long(4) src = blocks.vector_source_b(data, False, 1, (tag1, tag2, tag3)) formatter_object = digital.packet_header_ofdm(occupied_carriers, 1, tagname) self.assertEqual(formatter_object.header_len(), 6) self.assertEqual(pmt.symbol_to_string(formatter_object.len_tag_key()), tagname) header = digital.packet_headergenerator_bb(formatter_object.formatter(), tagname) sink = blocks.vector_sink_b() self.tb.connect(src, header, sink) self.tb.run() expected_data = ( 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ) self.assertEqual(sink.data(), expected_data)
def test_002_32bits (self): # 3 PDUs: | | | | data = (1, 2, 3, 4, 1, 2, 1, 2, 3, 4) tagname = "packet_len" tag1 = gr.tag_t() tag1.offset = 0 tag1.key = pmt.string_to_symbol(tagname) tag1.value = pmt.from_long(4) tag2 = gr.tag_t() tag2.offset = 4 tag2.key = pmt.string_to_symbol(tagname) tag2.value = pmt.from_long(2) tag3 = gr.tag_t() tag3.offset = 6 tag3.key = pmt.string_to_symbol(tagname) tag3.value = pmt.from_long(4) src = blocks.vector_source_b(data, False, 1, (tag1, tag2, tag3)) header = digital.packet_headergenerator_bb(32, tagname) sink = blocks.vector_sink_b() self.tb.connect(src, header, sink) self.tb.run() expected_data = ( # | Number of symbols | Packet number | Parity 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) self.assertEqual(sink.data(), expected_data)
def test_002_tags_plus_data(self): packet_len = 16 src_data = range(packet_len) tag1 = gr.tag_t() tag1.offset = 0 tag1.key = pmt.string_to_symbol('spam') tag1.value = pmt.from_long(23) tag2 = gr.tag_t() tag2.offset = 10 # Must be < packet_len tag2.key = pmt.string_to_symbol('eggs') tag2.value = pmt.from_long(42) src = blocks.vector_source_f(src_data, tags=(tag1, tag2)) s2ts = blocks.stream_to_tagged_stream(gr.sizeof_float, vlen=1, packet_len=packet_len, len_tag_key="packet_len") ts2pdu = blocks.tagged_stream_to_pdu(blocks.float_t, "packet_len") dbg = blocks.message_debug() self.tb.connect(src, s2ts, ts2pdu) self.tb.msg_connect(ts2pdu, "pdus", dbg, "store") self.tb.start() while dbg.num_messages() < 1: time.sleep(0.1) self.tb.stop() self.tb.wait() result_msg = dbg.get_message(0) metadata = pmt.to_python(pmt.car(result_msg)) vector = pmt.f32vector_elements(pmt.cdr(result_msg)) self.assertEqual(metadata, {'eggs': 42, 'spam': 23}) self.assertFloatTuplesAlmostEqual(tuple(vector), src_data)
def test_with_tags_2s_rolloff(self): " With tags and a 2-sample rolloff " fft_len = 8 cp_len = 2 tag_name = "length" expected_result = (7.0/2, 8, 1, 2, 3, 4, 5, 6, 7, 8, # 1.0/2 7.0/2+1.0/2, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1.0/2) tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(2) tag2 = gr.tag_t() tag2.offset = 1 tag2.key = pmt.string_to_symbol("random_tag") tag2.value = pmt.from_long(42) src = blocks.vector_source_c(range(1, fft_len+1) * 2, False, fft_len, (tag, tag2)) cp = digital.ofdm_cyclic_prefixer(fft_len, fft_len + cp_len, 2, tag_name) sink = blocks.vector_sink_c() self.tb.connect(src, cp, sink) self.tb.run() self.assertEqual(sink.data(), expected_result) tags = [gr.tag_to_python(x) for x in sink.tags()] tags = sorted([(x.offset, x.key, x.value) for x in tags]) expected_tags = [ (0, tag_name, len(expected_result)), (fft_len+cp_len, "random_tag", 42) ] self.assertEqual(tags, expected_tags)
def int_list_to_pmt(self, items): if len(items) == 0: return pmt.from_bool(pmt.PMT_F) else: pmtl = pmt.list1(pmt.from_long(items[0])) for i in range(len(items) - 1): pmtl = pmt.list_add(pmtl, pmt.from_long(items[i + 1])) return pmtl
def work(self, input_items, output_items): out = output_items[0] self.add_item_tag(0, self.nitems_written(0), pmt.intern("image_width"), pmt.from_long(self.image_width)) self.add_item_tag(0, self.nitems_written(0), pmt.intern("line_num"), pmt.from_long(self.line_num)) out[:self.image_width] = self.image_data[self.image_width*self.line_num: self.image_width*(1+self.line_num)] self.line_num += 1 if self.line_num >= self.image_height: self.line_num = 0 return self.image_width
def test_003_t (self): """ more advanced: - 6 symbols per carrier - 2 pilots per carrier - have enough data for nearly 3 OFDM symbols - send that twice - add some random tags - don't shift """ tx_symbols = list(range(1, 16)); # 15 symbols pilot_symbols = ((1j, 2j), (3j, 4j)) occupied_carriers = ((1, 3, 4, 11, 12, 14), (1, 2, 4, 11, 13, 14),) pilot_carriers = ((2, 13), (3, 12)) expected_result = (0, 1, 1j, 2, 3, 0, 0, 0, 0, 0, 0, 4, 5, 2j, 6, 0, 0, 7, 8, 3j, 9, 0, 0, 0, 0, 0, 0, 10, 4j, 11, 12, 0, 0, 13, 1j, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 2j, 0, 0) fft_len = 16 testtag1 = gr.tag_t() testtag1.offset = 0 testtag1.key = pmt.string_to_symbol('tag1') testtag1.value = pmt.from_long(0) testtag2 = gr.tag_t() testtag2.offset = 7 # On the 2nd OFDM symbol testtag2.key = pmt.string_to_symbol('tag2') testtag2.value = pmt.from_long(0) testtag3 = gr.tag_t() testtag3.offset = len(tx_symbols)+1 # First OFDM symbol of packet 2 testtag3.key = pmt.string_to_symbol('tag3') testtag3.value = pmt.from_long(0) testtag4 = gr.tag_t() testtag4.offset = 2*len(tx_symbols)-1 # Last OFDM symbol of packet 2 testtag4.key = pmt.string_to_symbol('tag4') testtag4.value = pmt.from_long(0) src = blocks.vector_source_c(tx_symbols * 2, False, 1, (testtag1, testtag2, testtag3, testtag4)) alloc = digital.ofdm_carrier_allocator_cvc(fft_len, occupied_carriers, pilot_carriers, pilot_symbols, (), self.tsb_key, False) sink = blocks.tsb_vector_sink_c(fft_len) self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, 1, len(tx_symbols), self.tsb_key), alloc, sink) self.tb.run () self.assertEqual(sink.data()[0], expected_result) tags_found = {'tag1': False, 'tag2': False, 'tag3': False, 'tag4': False} correct_offsets = {'tag1': 0, 'tag2': 1, 'tag3': 3, 'tag4': 5} for tag in sink.tags(): key = pmt.symbol_to_string(tag.key) if key in list(tags_found.keys()): tags_found[key] = True self.assertEqual(correct_offsets[key], tag.offset) self.assertTrue(all(tags_found.values()))
def test_003_t (self): """ Like test 1, but twice, plus one fail """ n_zeros = 5 header = (1, 2, 3) header_fail = (-1, -2, -4) # Contents don't really matter payload1 = tuple(range(5, 20)) payload2 = (42,) data_signal = (0,) * n_zeros + header + payload1 trigger_signal = [0,] * len(data_signal) * 2 trigger_signal[n_zeros] = 1 trigger_signal[len(data_signal)] = 1 trigger_signal[len(data_signal)+len(header_fail)+n_zeros] = 1 tx_signal = data_signal + header_fail + (0,) * n_zeros + header + payload2 + (0,) * 1000 data_src = blocks.vector_source_f(tx_signal, False) trigger_src = blocks.vector_source_b(trigger_signal, False) hpd = digital.header_payload_demux( len(header), 1, 0, "frame_len", "detect", False, gr.sizeof_float ) self.assertEqual(pmt.length(hpd.message_ports_in()), 1) header_sink = blocks.vector_sink_f() payload_sink = blocks.vector_sink_f() self.tb.connect(data_src, (hpd, 0)) self.tb.connect(trigger_src, (hpd, 1)) self.tb.connect((hpd, 0), header_sink) self.tb.connect((hpd, 1), payload_sink) self.tb.start() time.sleep(.2) # Need this, otherwise, the next message is ignored hpd.to_basic_block()._post( pmt.intern('header_data'), pmt.from_long(len(payload1)) ) while len(payload_sink.data()) < len(payload1): time.sleep(.2) hpd.to_basic_block()._post( pmt.intern('header_data'), pmt.PMT_F ) # This next command is a bit of a showstopper, but there's no condition to check upon # to see if the previous msg handling is finished time.sleep(.7) hpd.to_basic_block()._post( pmt.intern('header_data'), pmt.from_long(len(payload2)) ) while len(payload_sink.data()) < len(payload1) + len(payload2): time.sleep(.2) self.tb.stop() self.tb.wait() self.assertEqual(header_sink.data(), header + header_fail + header) self.assertEqual(payload_sink.data(), payload1 + payload2)
def test_004_connect (self): """ Advanced test: - Allocator -> IFFT -> Frequency offset -> FFT -> Serializer - FFT does shift (moves DC to middle) - Make sure input == output - Frequency offset is -2 carriers """ fft_len = 8 n_syms = 1 carr_offset = -2 freq_offset = 1.0 / fft_len * carr_offset # Normalized frequency occupied_carriers = ((-2, -1, 1, 2),) pilot_carriers = ((-3,),(3,)) pilot_symbols = ((1j,),(-1j,)) tx_data = (1, 2, 3, 4) tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(tx_data)) offsettag = gr.tag_t() offsettag.offset = 0 offsettag.key = pmt.string_to_symbol("ofdm_sync_carr_offset") offsettag.value = pmt.from_long(carr_offset) src = blocks.vector_source_c(tx_data, False, 1, (tag, offsettag)) alloc = digital.ofdm_carrier_allocator_cvc(fft_len, occupied_carriers, pilot_carriers, pilot_symbols, (), tag_name) tx_ifft = fft.fft_vcc(fft_len, False, (1.0/fft_len,)*fft_len, True) oscillator = analog.sig_source_c(1.0, analog.GR_COS_WAVE, freq_offset, 1.0/fft_len) mixer = blocks.multiply_cc() rx_fft = fft.fft_vcc(fft_len, True, (), True) sink2 = blocks.vector_sink_c(fft_len) self.tb.connect(rx_fft, sink2) serializer = digital.ofdm_serializer_vcc( alloc, "", 0, "ofdm_sync_carr_offset", True ) sink = blocks.vector_sink_c() self.tb.connect( src, alloc, tx_ifft, blocks.vector_to_stream(gr.sizeof_gr_complex, fft_len), (mixer, 0), blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len), rx_fft, serializer, sink ) self.tb.connect(oscillator, (mixer, 1)) self.tb.run () self.assertComplexTuplesAlmostEqual(sink.data()[-len(occupied_carriers[0]):], tx_data, places=4)
def test19(self): max_key = pmt.intern("MAX") _max = pmt.from_long(self.MAXINT32) min_key = pmt.intern("MIN") _min = pmt.from_long(self.MININT32) d = pmt.make_dict() d = pmt.dict_add(d, max_key, _max) d = pmt.dict_add(d, min_key, _min) s = pmt.serialize_str(d) deser = pmt.deserialize_str(s) self.assertTrue(pmt.equal(d, deser)) p_dict = pmt.to_python(deser) self.assertEqual(self.MAXINT32, p_dict["MAX"]) self.assertEqual(self.MININT32, p_dict["MIN"])
def work(self, input_items, output_items): num_output_items = len(output_items[0]) output_items[0][:] = 1.0+0j count = 0 key = pmt.string_to_symbol("pa_ramp") value = pmt.from_long(1) # send enable self.add_item_tag(0, count, key, value) count = self.rd_at value = pmt.from_long(0) # send disable self.add_item_tag(0, count, key, value) return num_output_items
def test_001_t (self): """ pretty simple (the carrier allocation is not a practical OFDM configuration!) """ fft_len = 6 tx_symbols = (1, 2, 3) # ^ this gets mapped to the DC carrier because occupied_carriers[0][0] == 0 pilot_symbols = ((1j,),) occupied_carriers = ((0, 1, 2),) pilot_carriers = ((3,),) sync_word = (range(fft_len),) expected_result = tuple(sync_word[0] + [1j, 0, 0, 1, 2, 3]) # ^ DC carrier tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(tx_symbols)) src = blocks.vector_source_c(tx_symbols, False, 1, (tag,)) alloc = digital.ofdm_carrier_allocator_cvc(fft_len, occupied_carriers, pilot_carriers, pilot_symbols, sync_word, tag_name) sink = blocks.vector_sink_c(fft_len) self.tb.connect(src, alloc, sink) self.tb.run () self.assertEqual(sink.data(), expected_result)
def handle_msg(self, msg): if pmt.dict_has_key(msg, pmt.intern(self.len_tag_key)): packet_len = pmt.to_python(msg)[self.len_tag_key] msg = pmt.dict_delete(msg, pmt.intern(self.len_tag_key)) msg = pmt.dict_add(msg, pmt.intern(self.len_tag_key), pmt.from_long(packet_len * 8)) self.message_port_pub(self.msg_buf_out, msg)
def generate_tag(tag_key, srcid, value, offset): tag = gr.tag_t() tag.key = pmt.string_to_symbol(tag_key) tag.srcid = pmt.string_to_symbol(srcid) tag.value = pmt.from_long(value) tag.offset = offset return tag
def write_data(self, msg): snr = pmt.to_double(pmt.dict_ref(msg, pmt.intern("snr"), pmt.from_double(0))) encoding = pmt.to_long(pmt.dict_ref(msg, pmt.intern("encoding"), pmt.from_long(0))) time_now = time() * 1000 delay = str(time_now - self.last_time) self.last_time = time_now if self.snr_file != "": f_snr = open(self.snr_file, 'a') f_snr.write(str(snr) + '\n') f_snr.close() if self.enc_file != "": f_enc = open(self.enc_file, 'a') f_enc.write(str(encoding) + '\n') f_enc.close() if self.delay_file != "": f_delay = open(self.delay_file, 'a') f_delay.write(delay + '\n') f_delay.close() if self.debug: print("SNR:" + str(snr)) print("Encoding:" + str(encoding)) print("Delay in millis: " + delay)
def general_work(self, input_items, output_items): inp = input_items[0] out = output_items[0] window = list(self.stream) + inp.tolist() alltags = self.get_tags_in_range(0, self.maxtag, self.nitems_read(0) + len(inp), self.syncword_tag) for tag in alltags: if tag.offset not in self.tags: self.maxtag = max(self.maxtag, tag.offset) self.tags.append(tag.offset) for tag in self.tags: if (tag >= self.nitems_read(0) - len(self.stream)) and (tag < self.nitems_read(0) + len(inp) - self.packet_len + 1): self.tags.remove(tag) start = tag - self.nitems_read(0) + len(self.stream) packet = window[start : start + self.packet_len] self.data += packet self.add_item_tag(0, self.written, self.packetlen_tag, pmt.from_long(self.packet_len)) self.written += self.packet_len self.stream.extend(inp.tolist()) len_write = min(len(self.data), len(output_items[0])) output_items[0][:len_write] = self.data[:len_write] self.data = self.data[len_write:] self.consume(0, len(inp)) return len_write
def test_001_t(self): tkey = 'packet_len' tsrc = 'testsrc' ptkey = pmt.intern(tkey) ptsrc = pmt.intern(tsrc) pre_padding = 17 post_padding = 23 tag = gr.tag_utils.python_to_tag((0, ptkey, pmt.from_long(128), ptsrc)) data = np.arange(128) + 1 data = data.astype(np.complex) ref = np.concatenate((np.zeros(pre_padding, dtype=data.dtype), data, np.zeros(post_padding, dtype=data.dtype))) src = blocks.vector_source_c(data, tags=(tag, )) uut = gfdm.short_burst_shaper(pre_padding, post_padding, tkey) snk = blocks.vector_sink_c() # set up fg self.tb.connect(src, uut, snk) self.tb.run() # check data res = np.array(snk.data()) self.assertComplexTuplesAlmostEqual(ref, res)
def test_003 (self): # Test that block stops when interacting with streaming interface port = str(random.Random().randint(0, 30000) + 10000) srcdata = (0x73, 0x75, 0x63, 0x68, 0x74, 0x65, 0x73, 0x74, 0x76, 0x65, 0x72, 0x79, 0x70, 0x61, 0x73, 0x73) tag_dict = {"offset": 0} tag_dict["key"] = pmt.intern("len") tag_dict["value"] = pmt.from_long(8) tag1 = gr.python_to_tag(tag_dict) tag_dict["offset"] = 8 tag2 = gr.python_to_tag(tag_dict) tags = [tag1, tag2] src = blocks.vector_source_b(srcdata, False, 1, tags) ts_to_pdu = blocks.tagged_stream_to_pdu(blocks.byte_t, "len") pdu_send = blocks.socket_pdu("UDP_CLIENT", "localhost", "4141") #pdu_recv = blocks.socket_pdu("UDP_SERVER", "localhost", port) pdu_to_ts = blocks.pdu_to_tagged_stream(blocks.byte_t, "len") head = blocks.head(gr.sizeof_char, 10) sink = blocks.vector_sink_b(1) self.tb.connect(src, ts_to_pdu) self.tb.msg_connect(ts_to_pdu, "pdus", pdu_send, "pdus") # a UDP socket connects pdu_send to pdu_recv # TODO: test that the recv socket can be destroyed from downstream # that signals DONE. Also that we get the PDUs we sent #self.tb.msg_connect(pdu_recv, "pdus", pdu_to_ts, "pdus") #self.tb.connect(pdu_to_ts, head, sink) self.tb.run()
def test14(self): const = self.MAXINT32 - 1 x_pmt = pmt.from_long(const) s = pmt.serialize_str(x_pmt) deser = pmt.deserialize_str(s) self.assertTrue(pmt.equal(x_pmt, deser)) self.assertEqual(const,pmt.to_long(deser))
def test_002_with_offset (self): """ Standard test, carrier offset """ fft_len = 16 tx_symbols = list(range(1, 16)); tx_symbols = (0, 0, 1, 1j, 2, 3, 0, 0, 0, 0, 0, 0, 4, 5, 2j, 6, 0, 0, 7, 8, 3j, 9, 0, 0, 0, 0, 0, 0, 10, 4j, 11, 12, 0, 0, 13, 1j, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 2j, 0) carr_offset = 1 # Compare this with tx_symbols from the previous test expected_result = tuple(range(1, 16)) + (0, 0, 0) occupied_carriers = ((1, 3, 4, 11, 12, 14), (1, 2, 4, 11, 13, 14),) n_syms = len(tx_symbols) // fft_len offsettag = gr.tag_t() offsettag.offset = 0 offsettag.key = pmt.string_to_symbol("ofdm_sync_carr_offset") offsettag.value = pmt.from_long(carr_offset) src = blocks.vector_source_c(tx_symbols, False, fft_len, (offsettag,)) sink = blocks.tsb_vector_sink_c(tsb_key=self.tsb_key) serializer = digital.ofdm_serializer_vcc( fft_len, occupied_carriers, self.tsb_key, "", 0, "ofdm_sync_carr_offset", False ) self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), serializer, sink) self.tb.run () self.assertEqual(sink.data()[0], expected_result) self.assertEqual(len(sink.tags()), 1)
def test_001_t (self): """ First header: Packet length 4, packet num 0 Second header: Packet 2, packet num 1 Third header: Invalid (parity bit does not check) (would be len 4, num 2) """ encoded_headers = ( # | Number of bytes | Packet number | Parity 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ) packet_len_tagname = "packet_len" random_tag = gr.tag_t() random_tag.offset = 5 random_tag.key = pmt.string_to_symbol("foo") random_tag.value = pmt.from_long(42) src = blocks.vector_source_b(encoded_headers, tags=(random_tag,)) parser = digital.packet_headerparser_b(32, packet_len_tagname) sink = blocks.message_debug() self.tb.connect(src, parser) self.tb.msg_connect(parser, "header_data", sink, "store") self.tb.start() time.sleep(1) self.tb.stop() self.tb.wait() self.assertEqual(sink.num_messages(), 3) msg1 = pmt.to_python(sink.get_message(0)) msg2 = pmt.to_python(sink.get_message(1)) msg3 = pmt.to_python(sink.get_message(2)) self.assertEqual(msg1, {'packet_len': 4, 'packet_num': 0, 'foo': 42}) self.assertEqual(msg2, {'packet_len': 2, 'packet_num': 1}) self.assertEqual(msg3, False)
def test_001_t2 (self): """ pretty simple (same as before, but odd fft len) """ fft_len = 5 tx_symbols = (1, 2, 3) # ^ this gets mapped to the DC carrier because occupied_carriers[0][0] == 0 occupied_carriers = ((0, 1, 2),) pilot_carriers = ((-2,),) pilot_symbols = ((1j,),) expected_result = (1j, 0, 1, 2, 3) # ^ DC carrier tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(tx_symbols)) src = blocks.vector_source_c(tx_symbols, False, 1, (tag,)) alloc = digital.ofdm_carrier_allocator_cvc(fft_len, occupied_carriers, pilot_carriers, pilot_symbols, (), tag_name) sink = blocks.vector_sink_c(fft_len) self.tb.connect(src, alloc, sink) self.tb.run () self.assertEqual(sink.data(), expected_result)
def work(self, input_items, output_items): if self.eof: return -1 out = output_items[0] self.add_item_tag(0, self.nitems_written(0), pmt.intern("image_width"), pmt.from_long(self.image_width)) self.add_item_tag(0, self.nitems_written(0), pmt.intern("line_num"), pmt.from_long(self.line_num)) out[:self.image_width] = self.image_data[self.image_width*self.line_num: self.image_width*(1+self.line_num)] self.line_num += 1 if self.line_num >= self.image_height: self.line_num = 0 if self.repeatmode == 0: self.eof = True if self.repeatmode == 2: self.load_image() return self.image_width
def test_002_t (self): """ same, but using negative carrier indices """ fft_len = 6 tx_symbols = (1, 2, 3) pilot_symbols = ((1j,),) occupied_carriers = ((-1, 1, 2),) pilot_carriers = ((3,),) expected_result = (1j, 0, 1, 0, 2, 3) tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(tx_symbols)) src = blocks.vector_source_c(tx_symbols, False, 1, (tag,)) alloc = digital.ofdm_carrier_allocator_cvc(fft_len, occupied_carriers, pilot_carriers, pilot_symbols, (), tag_name) sink = blocks.vector_sink_c(fft_len) self.tb.connect(src, alloc, sink) self.tb.run () self.assertEqual(sink.data(), expected_result)
def test_001b_shifted (self): """ Same as before, but shifted, because that's the normal mode in OFDM Rx """ fft_len = 16 tx_symbols = ( 0, 0, 0, 0, 0, 0, 1, 2, 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1j, 7, 8, 0, 9, 10, 1j, 11, 0, 0, 0, 0, 0, 0, 0, 0, 12, 13, 14, 0, 15, 16, 17, 0, 0, 0, 0, ) expected_result = tuple(range(18)) occupied_carriers = ((13, 14, 15, 1, 2, 3), (-4, -2, -1, 1, 2, 4),) n_syms = len(tx_symbols)/fft_len tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(n_syms) src = blocks.vector_source_c(tx_symbols, False, fft_len, (tag,)) serializer = digital.ofdm_serializer_vcc(fft_len, occupied_carriers, tag_name) sink = blocks.vector_sink_c() self.tb.connect(src, serializer, sink) self.tb.run () self.assertEqual(sink.data(), expected_result) self.assertEqual(len(sink.tags()), 1) result_tag = sink.tags()[0] self.assertEqual(pmt.symbol_to_string(result_tag.key), tag_name) self.assertEqual(pmt.to_long(result_tag.value), n_syms * len(occupied_carriers[0]))
def test_0010_tag_propagation (self): """ Make sure tags on the CRC aren't lost. """ # Data with precalculated CRC data = ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1 ) # 2, 67, 225, 188 testtag = gr.tag_t() testtag.offset = len(data)-1 testtag.key = pmt.string_to_symbol('tag1') testtag.value = pmt.from_long(0) src = blocks.vector_source_b(data, False, 1, (testtag,)) crc_check = digital.crc32_bb(True, self.tsb_key, False) sink = blocks.tsb_vector_sink_b(tsb_key=self.tsb_key) self.tb.connect( src, blocks.stream_to_tagged_stream(gr.sizeof_char, 1, len(data), self.tsb_key), crc_check, sink ) self.tb.run() self.assertEqual([len(data)-33,], [tag.offset for tag in sink.tags() if pmt.symbol_to_string(tag.key) == 'tag1'])
def test_with_tags_2s_rolloff(self): " With tags and a 2-sample rolloff " fft_len = 8 cp_len = 2 tag_name = "ts_last" expected_result = [ 7.0 / 2, 8, 1, 2, 3, 4, 5, 6, 7, 8, # 1.0/2 7.0 / 2 + 1.0 / 2, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1.0 / 2 ] tag2 = gr.tag_t() tag2.offset = 1 tag2.key = pmt.string_to_symbol("random_tag") tag2.value = pmt.from_long(42) src = blocks.vector_source_c( list(range(1, fft_len + 1)) * 2, False, fft_len, (tag2, )) cp = digital.ofdm_cyclic_prefixer(fft_len, fft_len + cp_len, 2, tag_name) sink = blocks.tsb_vector_sink_c(tsb_key=tag_name) self.tb.connect( src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, 2, tag_name), cp, sink) self.tb.run() self.assertEqual(sink.data()[0], expected_result) tags = [gr.tag_to_python(x) for x in sink.tags()] tags = sorted([(x.offset, x.key, x.value) for x in tags]) expected_tags = [(fft_len + cp_len, "random_tag", 42)] self.assertEqual(tags, expected_tags)
def test_002_crc_equal (self): """ Go through CRC set / CRC check and make sure the output is the same as the input. """ data = (0, 1, 2, 3, 4, 5, 6, 7, 8) tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(data)) src = blocks.vector_source_b(data, False, 1, (tag,)) crc = digital.crc32_bb(False, tag_name) crc_check = digital.crc32_bb(True, tag_name) sink = blocks.vector_sink_b() self.tb.connect(src, crc, crc_check, sink) self.tb.run() # Check that the packets after crc_check are the same as input. self.assertEqual(data, sink.data())
def work(self, input_items, output_items): """example: multiply with constant""" if np.any(input_items[0][:] > 0): for i in range(1, len(input_items[0])): if (self.prev == 0) and (input_items[0][i] == 1): self.example_param = 1 if (self.prev == 1): self.example_param = self.example_param + 1 if (self.prev == 1 and input_items[0][i] == 0): sys.stdout.write("%i: %i \n" % (self.chan, self.example_param)) self.message_port_pub(pmt.intern('msg_out'), pmt.from_long(self.chan)) self.prev = input_items[0][i] #output_items[0][:] = self.example_param return len(input_items[0])
def test_004_fail (self): """ Corrupt the data and make sure it fails CRC test. """ data = (0, 1, 2, 3, 4, 5, 6, 7) tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(data)) src = blocks.vector_source_b(data, False, 1, (tag,)) crc = digital.crc32_bb(False, tag_name) crc_check = digital.crc32_bb(True, tag_name) corruptor = blocks.add_const_bb(1) sink = blocks.vector_sink_b() self.tb.connect(src, crc, corruptor, crc_check, sink) self.tb.run() # crc_check will drop invalid packets self.assertEqual(len(sink.data()), 0)
def test_001c_carrier_offset_no_cp(self): """ Same as before, but put a carrier offset in there """ fft_len = 8 cp_len = 0 n_syms = 1 carr_offset = 1 occupied_carriers = ((-2, -1, 1, 2), ) tx_data = ( 0, 0, 0, -1j, -1j, 0, -1j, -1j, ) # The rx'd signal is shifted rx_expected = (0, 0, 1, 1, 0, 1, 1, 0) * n_syms equalizer = digital.ofdm_equalizer_static(fft_len, occupied_carriers) chan_tag = gr.tag_t() chan_tag.offset = 0 chan_tag.key = pmt.string_to_symbol("ofdm_sync_chan_taps") # Note: this is shifted to the correct position! chan_tag.value = pmt.init_c32vector(fft_len, (0, 0, -1j, -1j, 0, -1j, -1j, 0)) offset_tag = gr.tag_t() offset_tag.offset = 0 offset_tag.key = pmt.string_to_symbol("ofdm_sync_carr_offset") offset_tag.value = pmt.from_long(carr_offset) src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, offset_tag)) eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), cp_len, self.tsb_key) sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key) self.tb.connect( src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink) self.tb.run() # Check data self.assertComplexTuplesAlmostEqual(rx_expected, sink.data()[0], places=4)
def valueChanged(self, new_value): if int(self.scaleFactor) != 1: new_value = new_value * self.scaleFactor if self.varCallback is not None: self.varCallback(new_value) if self.isFloat: self.message_port_pub( pmt.intern("value"), pmt.cons(pmt.intern(self.outputmsgname), pmt.from_double(new_value))) else: self.message_port_pub( pmt.intern("value"), pmt.cons(pmt.intern(self.outputmsgname), pmt.from_long(new_value)))
def work(self, input_items, output_items): out = output_items[0] slpack = self._slClient.slconn.collect() try: seqnum = slpack.getSequenceNumber() trace = slpack.getTrace() except: out[:] = [] return 0 # print "sending slpack(id:%d): %d samples, len(out)=%d" % \ # (seqnum, len(trace.data), len(out)) out[:len(trace.data)] = numpy.float32(trace.data) # https://gnuradio.org/doc/doxygen/page_python_blocks.html # https://github.com/guruofquality/grextras/wiki/Blocks-Coding-Guide # add_item_tag(which_output, abs_offset, key, value, srcid) # add a packet length tag abs_offset = self.nitems_written + 0 key = pmt.string_to_symbol("packet_len") value = pmt.from_long(len(trace.data)) srcid = pmt.string_to_symbol(self._channel) self.add_item_tag(0, abs_offset, key, value, srcid) # add a tag to manage time abs_offset = self.nitems_written + 0 key = pmt.string_to_symbol("rx_time") value = pmt.from_double(trace.stats['starttime'].timestamp) srcid = pmt.string_to_symbol(self._channel) self.add_item_tag(0, abs_offset, key, value, srcid) # print "starttime ", trace.stats['starttime'].timestamp # add a tag to manage sample rate change abs_offset = self.nitems_written + 0 key = pmt.string_to_symbol("rx_rate") fech = 1. / trace.stats['delta'] value = pmt.from_double(fech) srcid = pmt.string_to_symbol(self._channel) self.add_item_tag(0, abs_offset, key, value, srcid) # print "fech ", 1./trace.stats['delta'] self.samp_rate = fech self.nitems_written += len(trace.data) return len(trace.data)
def newValue(self, curValue, curIndex): p_val = pmt.from_float(curValue) p_index = pmt.from_long(curIndex) if curValue != self.lastValue: try: self.varCallback(curValue) except: pass self.message_port_pub(pmt.intern("value"), pmt.cons(pmt.intern("value"), p_val)) self.lastValue = curValue self.message_port_pub(pmt.intern("index"), pmt.cons(pmt.intern("index"), p_index))
def test_001_t(self): n_frames = 20 timeslots = 9 subcarriers = 128 active_subcarriers = 110 cp_len = subcarriers // 2 smap = get_subcarrier_map(subcarriers, active_subcarriers) seed = 4711 ftype = 'rrc' falpha = .5 tag_key = 'frame_start' preamble, x_preamble = mapped_preamble(seed, ftype, falpha, active_subcarriers, subcarriers, smap, 2, cp_len, cp_len // 2) block_len = timeslots * subcarriers offset = len(preamble) + cp_len frame_len = len(preamble) + timeslots * subcarriers + cp_len data = np.array([], dtype=complex) ref = np.array([], dtype=complex) tags = [] print('frame_len: ', frame_len) for i in range(n_frames): d_block = modulate_mapped_gfdm_block(get_random_qpsk(timeslots * active_subcarriers), timeslots, subcarriers, active_subcarriers, 2, falpha) frame = pinch_cp_add_block(d_block, timeslots, subcarriers, cp_len, cp_len // 2) frame = np.concatenate((preamble, frame)) r = frame[offset:offset + block_len] ref = np.concatenate((ref, r)) tag = gr.tag_t() tag.key = pmt.string_to_symbol(tag_key) tag.offset = len(data) tag.srcid = pmt.string_to_symbol('qa') tag.value = pmt.from_long(block_len) tags.append(tag) data = np.concatenate((data, frame)) src = blocks.vector_source_c(data, False, 1, tags) cp_rm = gfdm.remove_prefix_cc(frame_len, block_len, offset, tag_key) snk = blocks.vector_sink_c() self.tb.connect(src, cp_rm, snk) self.tb.run() # # check data res = np.array(snk.data()) tags = snk.tags() self.assertComplexTuplesAlmostEqual(res, ref, 5)
def work(self, input_items, output_items): # there has to be a better way to write this function. do that later s = input_items[0][0] l = input_items[1][0] sig = input_items[2][0] wndw = [1] * 161 wndw[0] = 0.5 wndw[160] = 0.5 sig_wndw = [1] * 81 sig_wndw[0] = 0.5 sig_wndw[80] = 0.5 # SHORT FIELD s = self.periodic_extend(s, 161) s = self.window(s, wndw) # LONG FIELD l = self.periodic_extend(l, len(l) * 2) end_val = l[0] l = self.cyclic_extend(l, len(l) / 4) l = np.append(l, [end_val]) l = self.window(l, wndw) # SIGNAL FIELD end_val = sig[0] sig = self.cyclic_extend(sig, len(sig) / 4) sig = np.append(sig, [end_val]) sig = self.window(sig, sig_wndw) # COMBINING PARTS combined = np.array([], dtype=np.complex64) combined = np.append(combined, s[:-1]) combined = np.append(combined, [s[-1] + l[0]]) combined = np.append(combined, l[1:-1]) combined = np.append(combined, [l[-1] + sig[0]]) combined = np.append(combined, sig[1:]) self.add_item_tag(0, self.nitems_written(0) + 1, pmt.intern("packet_len"), pmt.from_long(len(combined))) out = output_items[0] out[:] = combined return len(output_items[0])
def test_001_basic_io(self): self.tb.start() # provide two non PDU inputs and one PDU input self.add_sys_time.to_basic_block()._post( pmt.intern("pdu"), pmt.intern("BAD PDU")) self.add_sys_time.to_basic_block()._post(pmt.intern("pdu"), pmt.cons(pmt.from_long(4), pmt.PMT_NIL)) self.add_sys_time.to_basic_block()._post(pmt.intern("pdu"), pmt.cons(pmt.make_dict(), pmt.init_f32vector(1, [0.0]))) self.waitFor(lambda: self.debug.num_messages() >= 1, timeout=1.0, poll_interval=0.01) self.tb.stop() self.tb.wait() # make sure we got one message and it has a systime key self.assertEqual(1, self.debug.num_messages()) self.assertTrue(pmt.dict_has_key( pmt.car(self.debug.get_message(0)), pmt.intern('systime')))
def test_001_t(self): """ test 256 bit packet """ # set up fg data_in = range(256) # np.random.randint(0, 2, size=256) key = pmt.intern("len_tag") val = pmt.from_long(256) tag = gr.tag_utils.python_to_tag((0, key, val)) self.src = blocks.vector_source_f(data_in, False, 1, [tag]) self.deintlvr = lpwan.dsss_deinterleaver_ff("len_tag") self.snk = blocks.vector_sink_f(1) self.tb.connect(self.src, self.deintlvr, self.snk) self.tb.run() # check data self.assertFloatTuplesAlmostEqual(dsss_const.intlvr_seq_256, self.snk.data()[0:256])
def timer_tick(self): cmd = pmt.make_dict() if self.count == 0: cmd = pmt.dict_add(cmd, pmt.intern('chan'), pmt.to_pmt(self.uhd_channel)) cmd = pmt.dict_add(cmd, pmt.intern('freq'), pmt.to_pmt(self.freq_list[self.current_idx])) self.count = 10 self.current_idx += 1 self.current_idx %= len(self.freq_list) else: self.count -= 1 cmd = pmt.dict_add(cmd, pmt.intern('tag'), pmt.from_long(1)) self.message_port_pub(pmt.intern(self.msg_port_name), cmd) self.timer = Timer(self.switching_interval / 10.0, self.timer_tick) self.timer.start()
def test_001(self): #Test the overflow buffer in pdu_to_tagged_stream src_data = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] src = blocks.pdu_to_tagged_stream(blocks.float_t) snk = blocks.vector_sink_f() self.tb.connect(src, snk) port = pmt.intern("pdus") msg = pmt.cons( pmt.PMT_NIL, pmt.init_f32vector(10, src_data)) src.to_basic_block()._post(port, msg) src.to_basic_block()._post(pmt.intern("system"), pmt.cons(pmt.intern("done"), pmt.from_long(1))) self.tb.start() self.tb.wait() self.assertEqual(src_data, list(snk.data()) )
def setUp (self): self.tb = gr.top_block() # origin data is equal to timestamps samp_rate = 1. # data [lost items 0, 1, ..., 9], 10, 11, ..., 19 data_with_overflows = np.arange(10,20) # Overflow tag overflow = gr.tag_utils.python_to_tag( (0, pmt.intern("overflows"), pmt.from_long(10), pmt.intern("src0"))) self.src = blocks.vector_source_c(data=data_with_overflows, repeat=False, vlen=1, tags=[overflow,]) self.dut = corrsounder.sequence_gate_cc(3, samp_rate) self.dst = blocks.vector_sink_c(vlen=1) self.tb.connect(self.src, self.dut, self.dst)
def test_002_t(self): """ once again, but this time add a sync word """ fft_len = 6 sync_word = (0, ) * fft_len tx_symbols = (1, 2, 3, 4, 5, 6) pilot_symbols = ((1j, ), ) occupied_carriers = ((-1, 1, 2), ) pilot_carriers = ((3, ), ) expected_result = sync_word + (1j, 0, 1, 0, 2, 3) + (1j, 0, 4, 0, 5, 6) tag_name = "len" tag = gr.tag_t() tag.offset = 0 tag.key = pmt.string_to_symbol(tag_name) tag.value = pmt.from_long(len(tx_symbols)) special_tag1 = gr.tag_t() special_tag1.offset = 0 special_tag1.key = pmt.string_to_symbol("spam") special_tag1.value = pmt.to_pmt(23) special_tag2 = gr.tag_t() special_tag2.offset = 4 special_tag2.key = pmt.string_to_symbol("eggs") special_tag2.value = pmt.to_pmt(42) src = blocks.vector_source_c(tx_symbols, False, 1, (tag, special_tag1, special_tag2)) alloc = digital.ofdm_carrier_allocator_cvc(fft_len, occupied_carriers, pilot_carriers, pilot_symbols, sync_words=(sync_word, ), len_tag_key=tag_name) sink = blocks.vector_sink_c(fft_len) self.tb.connect(src, alloc, sink) self.tb.run() self.assertEqual(sink.data(), expected_result) tags = [gr.tag_to_python(x) for x in sink.tags()] tags = sorted([(x.offset, x.key, x.value) for x in tags]) tags_expected = [ (0, 'len', 3), (0, 'spam', 23), (2, 'eggs', 42), ] self.assertEqual(tags, tags_expected)
def make_tags(len_tag_key, debug_key, payload_key): debug_tag = gr.tag_t() debug_tag.key = pmt.intern(debug_key) debug_tag.value = pmt.from_long(400) debug_tag.offset = 5 remove_tag = gr.tag_t() remove_tag.key = pmt.intern(payload_key) remove_tag.value = pmt.from_long(400) remove_tag.offset = 6 tags = [debug_tag, remove_tag] tag1 = gr.tag_t() tag1.key = pmt.intern(len_tag_key) tag1.value = pmt.from_long(1) tag1.offset = 0 tags.append(tag1) tag2 = gr.tag_t() tag2.key = pmt.intern(len_tag_key) tag2.value = pmt.from_long(1) tag2.offset = 1 tags.append(tag2) tag3 = gr.tag_t() tag3.key = pmt.intern(len_tag_key) tag3.value = pmt.from_long(1) tag3.offset = 2 tags.append(tag3) tag4 = gr.tag_t() tag4.key = pmt.intern(len_tag_key) tag4.value = pmt.from_long(2) tag4.offset = 3 tags.append(tag4) tag5 = gr.tag_t() tag5.key = pmt.intern(len_tag_key) tag5.value = pmt.from_long(1) tag5.offset = 5 tags.append(tag5) tag6 = gr.tag_t() tag6.key = pmt.intern(len_tag_key) tag6.value = pmt.from_long(1) tag6.offset = 6 tags.append(tag6) return tuple(tags)
def variable_changed(self, value): try: if type(value) == float: p = pmt.from_double(value) elif type(value) == int: p = pmt.from_long(value) elif type(value) == bool: p = pmt.from_bool(value) elif type(value) == str: p = pmt.intern(value) else: p = pmt.to_pmt(value) self.message_port_pub(pmt.intern("msgout"), pmt.cons(pmt.intern(self.pairname), p)) except Exception as e: gr.log.error("Unable to convert " + repr(value) + " to PDU, no message will be emitted (reason: %s)" % repr(e))
def test_001_t(self): tags = [] # ref = [] nt = int(time.time() * 1e9) for i in range(5): d = [ i * 500, pmt.intern('time'), pmt.from_long(nt), pmt.intern('testsource') ] t = gr.tag_utils.python_to_tag(d) tags.append(t) debugger = latency.tag_timestamp_debug(8, "time", "tester") src = blocks.vector_source_c([0.j] * 10000, False, 1, tags) self.tb.connect(src, debugger) # set up fg self.tb.run()
def tearDown(self): self.tb.msg_connect((self.encode, 'out'), (self.decode, 'in')) self.tb.msg_connect((self.decode, 'out'), (self.dbg, 'store')) pdu = pmt.cons(pmt.PMT_NIL, pmt.init_u8vector(len(self.data), self.data)) self.encode.to_basic_block()._post(pmt.intern('in'), pdu) self.encode.to_basic_block()._post( pmt.intern('system'), pmt.cons(pmt.intern('done'), pmt.from_long(1))) self.tb.start() self.tb.wait() result = pmt.u8vector_elements(pmt.cdr(self.dbg.get_message(0))) np.testing.assert_equal(self.data, result, 'Decoded data does not match encoder input') self.tb = None
def test_001_simple (self): """ Very simple functionality testing: - static equalizer - init channel state with all ones - transmit all ones - make sure we rx all ones - Tag check: put in frame length tag and one other random tag, make sure they're propagated """ fft_len = 8 equalizer = digital.ofdm_equalizer_static(fft_len) n_syms = 3 tx_data = (1,) * fft_len * n_syms chan_tag = gr.tag_t() chan_tag.offset = 0 chan_tag.key = pmt.string_to_symbol("ofdm_sync_chan_taps") chan_tag.value = pmt.init_c32vector(fft_len, (1,) * fft_len) random_tag = gr.tag_t() random_tag.offset = 1 random_tag.key = pmt.string_to_symbol("foo") random_tag.value = pmt.from_long(42) src = blocks.vector_source_c(tx_data, False, fft_len, (chan_tag, random_tag)) eq = digital.ofdm_frame_equalizer_vcvc(equalizer.base(), 0, self.tsb_key) sink = blocks.tsb_vector_sink_c(fft_len, tsb_key=self.tsb_key) self.tb.connect( src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), eq, sink ) self.tb.run () # Check data self.assertEqual(tx_data, sink.data()[0]) # Check tags tag_dict = dict() for tag in sink.tags(): ptag = gr.tag_to_python(tag) tag_dict[ptag.key] = ptag.value expected_dict = { 'foo': 42 } self.assertEqual(tag_dict, expected_dict)
def test_000(self): num_msgs = 10 msg_interval = 1000 msg_list = [] for i in range(num_msgs): msg_list.append(pmt.from_long(i)) # Create vector source with dummy data to trigger messages src_data = [] for i in range(num_msgs * msg_interval): src_data.append(float(i)) src = blocks.vector_source_f(src_data, False) msg_gen = message_generator(msg_list, msg_interval) msg_cons = message_consumer() # Connect vector source to message gen self.tb.connect(src, msg_gen) # Connect message generator to message consumer self.tb.msg_connect(msg_gen, 'out_port', msg_cons, 'in_port') # Verify that the messgae port query functions work self.assertEqual( pmt.symbol_to_string(pmt.vector_ref(msg_gen.message_ports_out(), 0)), 'out_port') self.assertEqual( pmt.symbol_to_string(pmt.vector_ref(msg_cons.message_ports_in(), 0)), 'in_port') # Run to verify message passing self.tb.start() # Wait for all messages to be sent while msg_gen.msg_ctr < num_msgs: time.sleep(0.5) self.tb.stop() self.tb.wait() # Verify that the message consumer got all the messages self.assertEqual(num_msgs, len(msg_cons.msg_list)) for i in range(num_msgs): self.assertTrue(pmt.equal(msg_list[i], msg_cons.msg_list[i]))
def test_001_t(self): # set up fg Range = (2, 4, 22, 23) velocity = (3, 12, 19, 19) power = (10, 10, 10, 1) # last value is thrown away with merging peaks pmt_time = pmt.list2( pmt.string_to_symbol('rx_time'), pmt.make_tuple(pmt.from_long(-1), pmt.from_double(0))) pmt_axisx = pmt.list2(pmt.string_to_symbol('axis_x'), pmt.init_f32vector(len(Range), Range)) pmt_axisy = pmt.list2(pmt.string_to_symbol('axis_y'), pmt.init_f32vector(len(velocity), velocity)) pmt_power = pmt.list2(pmt.string_to_symbol('power'), pmt.init_f32vector(len(power), power)) pmt_in = pmt.list4(pmt_time, pmt_axisx, pmt_axisy, pmt_power) src = blocks.message_strobe(pmt_in, 300) est = radar.estimator_ofdm('range', 30, (0, 40, -40, 10), 'velocity', 20, (-5, 5)) snk = blocks.message_debug() self.tb.msg_connect(src, "strobe", est, "Msg in") self.tb.msg_connect(est, "Msg out", snk, "store") self.tb.msg_connect(est, "Msg out", snk, "print") self.tb.start() sleep(0.5) self.tb.stop() self.tb.wait() # get ref data ref_range = (0 + 40 * 2 / 15.0, 0 + 40 * 4 / 15.0, -40 + 50 * (22 - 15) / 15.0) ref_velocity = (-5 + 10 * 3 / 20.0, -5 + 10 * 12 / 20.0, -5 + 10 * 19 / 20.0) # check data msg = snk.get_message(0) val_range = pmt.f32vector_elements(pmt.nth(1, pmt.nth(1, msg))) val_velocity = pmt.f32vector_elements(pmt.nth(1, pmt.nth(2, msg))) print val_range self.assertFloatTuplesAlmostEqual(val_velocity, ref_velocity, 4) self.assertFloatTuplesAlmostEqual(val_range, ref_range, 4)
def work(self, input_items, output_items): out = output_items[0] produced = long(0) # print(self.insert_tag) # print(self.offset) for o in range(0, len(out)): if self.insert_tag: self.add_item_tag(0, self.offset + long(o), pmt.intern("packet_len"), pmt.from_long(self.packet_len)) # print("a tag was inserted into the stream. offset: {}".format(self.offset)) self.insert_tag = False if len(self.buffer) > 0: out[o] = self.buffer[0] self.buffer = self.buffer[1:] produced += 1 self.offset += produced return produced
def test_001_t(self): data_in = [0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1] data_expected_result = [0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1] l = len(data_in) key = pmt.intern("len_tag") val = pmt.from_long(l) tag = gr.tag_utils.python_to_tag([0, key, val]) # set up fg self.src = blocks.vector_source_b(data_in, False, 1, [tag]) self.diffcoding = lpwan.dsss_diff_coding_bb("len_tag") self.snk = blocks.vector_sink_b(1) self.tb.connect(self.src, self.diffcoding, self.snk) self.tb.run() # check data self.assertFloatTuplesAlmostEqual(data_expected_result, self.snk.data())
def test_002_t(self): """ test 384 bit packet with interleaver """ # set up fg data_in = np.random.randint(0, 2, size=384) key = pmt.intern("len_tag") val = pmt.from_long(384) tag = gr.tag_utils.python_to_tag((0, key, val)) self.src = blocks.vector_source_b(data_in, False, 1, [tag]) self.intlvr = lpwan.dsss_interleaver_bb("len_tag") self.cast = blocks.char_to_float() self.deintlvr = lpwan.dsss_deinterleaver_ff("len_tag") self.snk = blocks.vector_sink_f(1) self.tb.connect(self.src, self.intlvr, self.cast, self.deintlvr, self.snk) self.tb.run() # check data self.assertFloatTuplesAlmostEqual(data_in, self.snk.data())
def onBtnClicked(self, pressed): if type(self.msgValue) == int: self.message_port_pub( pmt.intern("pressed"), pmt.cons(pmt.intern(self.msgName), pmt.from_long(self.msgValue))) elif type(self.msgValue) == float: self.message_port_pub( pmt.intern("pressed"), pmt.cons(pmt.intern(self.msgName), pmt.from_float(self.msgValue))) elif type(self.msgValue) == str: self.message_port_pub( pmt.intern("pressed"), pmt.cons(pmt.intern(self.msgName), pmt.intern(self.msgValue))) elif type(self.msgValue) == bool: self.message_port_pub( pmt.intern("pressed"), pmt.cons(pmt.intern(self.msgName), pmt.from_bool(self.msgValue)))
def test_005_tag_propagation(self): """ Make sure tags on the CRC aren't lost. """ # Data with precalculated CRC data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 67, 225, 188] testtag = gr.tag_t() testtag.offset = len(data) - 1 testtag.key = pmt.string_to_symbol('tag1') testtag.value = pmt.from_long(0) src = blocks.vector_source_b(data, False, 1, (testtag, )) crc_check = digital.crc32_bb(True, self.tsb_key) sink = blocks.tsb_vector_sink_b(tsb_key=self.tsb_key) self.tb.connect(src, blocks.stream_to_tagged_stream( gr.sizeof_char, 1, len(data), self.tsb_key), crc_check, sink) self.tb.run() self.assertEqual([len(data) - 5, ], [ tag.offset for tag in sink.tags() if pmt.symbol_to_string(tag.key) == 'tag1' ])
def test_005_packet_len_tag (self): """ Standard test """ fft_len = 16 tx_symbols = list(range(1, 16)); tx_symbols = (0, 1, 1j, 2, 3, 0, 0, 0, 0, 0, 0, 4, 5, 2j, 6, 0, 0, 7, 8, 3j, 9, 0, 0, 0, 0, 0, 0, 10, 4j, 11, 12, 0, 0, 13, 1j, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 2j, 0, 0) expected_result = tuple(range(1, 16)) occupied_carriers = ((1, 3, 4, 11, 12, 14), (1, 2, 4, 11, 13, 14),) n_syms = len(tx_symbols) // fft_len packet_len_tsb_key = "packet_len" tag2 = gr.tag_t() tag2.offset = 0 tag2.key = pmt.string_to_symbol("packet_len") tag2.value = pmt.from_long(len(expected_result)) src = blocks.vector_source_c(tx_symbols, False, fft_len, (tag2,)) serializer = digital.ofdm_serializer_vcc(fft_len, occupied_carriers, self.tsb_key, packet_len_tsb_key , 0, "", False) sink = blocks.tsb_vector_sink_c(tsb_key=packet_len_tsb_key) self.tb.connect(src, blocks.stream_to_tagged_stream(gr.sizeof_gr_complex, fft_len, n_syms, self.tsb_key), serializer, sink) self.tb.run () self.assertEqual(sink.data()[0], expected_result)
def addStatus(self, key, value): if isinstance(value, (int, long)): self.message = pmt.dict_add(self.message, pmt.string_to_symbol(key), pmt.from_long(value)) elif isinstance(value, basestring): self.message = pmt.dict_add(self.message, pmt.string_to_symbol(key), pmt.string_to_symbol(value)) elif isinstance(value, float): self.message = pmt.dict_add(self.message, pmt.string_to_symbol(key), pmt.from_double(value)) elif isinstance(value, (tuple)): self.message = pmt.dict_add(self.message, pmt.string_to_symbol(key), pmt.init_u16vector(2, value)) elif isinstance(value, (list)): self.message = pmt.dict_add(self.message, pmt.string_to_symbol(key), pmt.init_u16vector(2, value))