示例#1
0
    def forward_propagation(self, x):
        """
        Runs a forward propagation of the model for a batch of examples, activating
        all layers besides the top one.

        The function should return the linear input to the top layer, i.e.,
        non-normalized scores, with higher scores corresponding to greater
        probability of an image belonging a particular class.

        Inputs:
            x: batch with shape [batch_size, 1, 28, 28]
        Output:
            A Tensor with shape [batch_size, 10] containing predicted scores (logits)
        """

        # normalize data to improve performance
        x = x / 127.5 - 1.0
        # flatten the input image data to a 2d matrix in the shape [N, d]
        x = nn.reshape(x, [x.shape[0], -1], inplace=True)

        # define the structure of the network to get the logits result from x
        #######################################################################
        "*** YOUR CODE HERE ***"
        logits = None
        hidden1=nn.matmul(x,self.param['w1'])+self.param['b1']
        z1=nn.relu(hidden1)
        hidden2=nn.matmul(z1,self.param['w2'])+self.param['b2']
        #z2=nn.ReLU(hidden2)
        logits=hidden2
        #######################################################################

        return logits
    def forward_propagation(self, x):
        """
        Runs a forward propagation of the model for a batch of examples, activating 
        all layers besides the top one. 

        The function should return the linear input to the top layer, i.e.,
        non-normalized scores, with higher scores corresponding to greater 
        probability of an image belonging a particular class. 

        Inputs:
            x: batch with shape [batch_size, 1, 28, 28]
        Output:
            A Tensor with shape [batch_size, 10] containing predicted scores (logits)
        """

        # normalize data to improve performance
        x = x / 127.5 - 1.0
        # flatten the input image data to a 2d matrix in the shape [N, d]
        x = nn.reshape(x, [x.shape[0], -1], inplace=True)

        # define the structure of the network to get the logits result from x
        #######################################################################
        "*** YOUR CODE HERE ***"
        y1 = nn.matmul(x, self.param["w"]) + self.param["b"]
        y1 = nn.relu(y1)

        y2 = nn.matmul(y1, self.param["w1"]) + self.param["b1"]
        y2 = nn.relu(y2)
        '''
        y3 = nn.matmul(y2_out, self.param["w2"]) + self.param["b2"]
        y3_out = nn.relu(y3)
        
        y4 = nn.matmul(y3_out, self.param["w3"]) + self.param["b3"]
        y4_out = nn.relu(y4)
        '''

        logits = nn.matmul(y2, self.param["w2"]) + self.param["b2"]
        #logits = nn.sigmoid(logits)
        #######################################################################

        return logits