def test_supplying_attributes(self): fid, single_tmp = tempfile.mkstemp(suffix='.nc') attrs = { 'y': { '_CoordinateAxisType': 'Lat', '_FillValue': -9999.9, 'missing_value': -9999.9, } } with OrthogonalMultidimensionalTimeseries(self.single) as s: df = s.to_dataframe() with OrthogonalMultidimensionalTimeseries.from_dataframe( df, single_tmp, attributes=attrs) as result_ncd: assert 'station' in result_ncd.dimensions assert result_ncd.variables['y']._CoordinateAxisType == 'Lat' with self.assertRaises(AttributeError): result_ncd.variables['y'].missing_value with self.assertRaises(AttributeError): result_ncd.variables['y']._FillValue test_is_mine(OrthogonalMultidimensionalTimeseries, single_tmp) # Try to load it again os.close(fid) os.remove(single_tmp)
def test_omp_dataframe(self): single_tmp = tempfile.mkstemp(suffix='.nc')[-1] with OrthogonalMultidimensionalTimeseries(self.single) as s: df = s.to_dataframe() nc = OrthogonalMultidimensionalTimeseries.from_dataframe( df, single_tmp) nc.close() logger.info(single_tmp)
def test_timeseries_omp_dataframe(self): fid, single_tmp = tempfile.mkstemp(suffix='.nc') with OrthogonalMultidimensionalTimeseries(self.single) as s: df = s.to_dataframe() with OrthogonalMultidimensionalTimeseries.from_dataframe( df, single_tmp) as result_ncd: assert 'station' in result_ncd.dimensions test_is_mine(OrthogonalMultidimensionalTimeseries, single_tmp) # Try to load it again os.close(fid) os.remove(single_tmp)
def test_timeseries_omt_reduce_dims(self): fid, single_tmp = tempfile.mkstemp(suffix='.nc') with OrthogonalMultidimensionalTimeseries(self.single) as s: df = s.to_dataframe() with OrthogonalMultidimensionalTimeseries.from_dataframe( df, single_tmp, reduce_dims=True) as result_ncd: assert 'station' not in result_ncd.dimensions assert np.ma.allclose(result_ncd.variables['pH'][:].flatten(), self.ph) test_is_mine(OrthogonalMultidimensionalTimeseries, single_tmp) # Try to load it again os.close(fid) os.remove(single_tmp)
def test_timeseries_omt_dataframe_multi(self): fid, single_tmp = tempfile.mkstemp(suffix='.nc') with OrthogonalMultidimensionalTimeseries(self.multi) as s: df = s.to_dataframe() with OrthogonalMultidimensionalTimeseries.from_dataframe( df, single_tmp) as result_ncd: assert 'station' in result_ncd.dimensions assert np.ma.allclose( result_ncd.variables['temperature'][0, 0:7].flatten(), [ 18.61804, 13.2165, 39.30018, 17.00865, 24.95154, 35.99525, 24.33436 ], ) test_is_mine(OrthogonalMultidimensionalTimeseries, single_tmp) # Try to load it again os.close(fid) os.remove(single_tmp)
def test_timeseries_omt_no_z(self): fid, single_tmp = tempfile.mkstemp(suffix='.nc') with OrthogonalMultidimensionalTimeseries(self.single) as s: df = s.to_dataframe() axes = {'z': None} df.drop(columns=['z'], inplace=True) with OrthogonalMultidimensionalTimeseries.from_dataframe( df, single_tmp, axes=axes, ) as result_ncd: assert 'station' in result_ncd.dimensions assert 'z' not in result_ncd.variables assert np.ma.allclose(result_ncd.variables['pH'][:].flatten(), self.ph) test_is_mine(OrthogonalMultidimensionalTimeseries, single_tmp) # Try to load it again os.close(fid) os.remove(single_tmp)