示例#1
0
stock_features['update_datetime'] = dt.datetime.today()
# 写入数据库
dtype_dict = {
    'stock_code': VARCHAR(8),
    'trade_date': VARCHAR(8),
    'b': DECIMAL(20, 6),
    'c': DECIMAL(20, 6),
    'u': DECIMAL(20, 6),
    'l': DECIMAL(20, 6),
    'ol': DECIMAL(20, 6),
    'cl': DECIMAL(20, 6),
    'ac': DECIMAL(20, 6),
    'update_datetime': DATETIME
}
save_into_db(stock_features,
             'LDH_features_source',
             dtype_dict,
             'gb',
             if_exists='replace')
sql_merge = '''
MERGE INTO LDH_features as T
USING LDH_features_source as S
ON (T.trade_date = S.trade_date AND T.stock_code = S.stock_code)
WHEN NOT MATCHED BY TARGET
THEN INSERT 
(stock_code,trade_date,b,c,u,l,ol,cl,ac,update_datetime)
VALUES
(S.stock_code,S.trade_date,S.b,S.c,S.u,S.l,S.ol,S.cl,S.ac,S.update_datetime);  
'''
execute_session(sql_merge, 'gb')
示例#2
0
}
save_into_db(intra_last_signal, 'Yi_mgt_pattern_pred_minute_source',
             dtype_dict, 'xiaoyi40', 'replace')
SQL_MERGE_SIGNAL_MINUTE = '''
MERGE INTO Yi_mgt_pattern_pred_minute as T
USING Yi_mgt_pattern_pred_minute_source as S
ON (T.target_date = S.target_date AND T.stock_code = S.stock_code)
WHEN NOT MATCHED BY TARGET
THEN INSERT 
(stock_code,target_date,pred_dt,signal_type,signal_prob)
VALUES
(S.stock_code,S.target_date,S.pred_dt,S.signal_type,S.signal_prob)
WHEN NOT MATCHED BY SOURCE
THEN DELETE;
'''
execute_session(SQL_MERGE_SIGNAL_MINUTE, 'xiaoyi40')

#%% 日间
SQL_GET_LAST_SIGNAL_DAILY = '''
SELECT 
a.[stock_code]
,a.[target_date]
,[pred_dt]
,[signal_type]
,[signal_prob]
FROM LDH_pattern_pred_daily a
RIGHT JOIN (
SELECT 
max(target_date) as target_date,
stock_code 
FROM LDH_pattern_pred_daily
示例#3
0
文件: persister.py 项目: orxg/tracker
    def save_state(self, state):
        strategy_name = state['strategy_name']
        position_hist = state['position_hist']
        rebalance_hist = state['rebalance_hist']
        refresh_rate = state['refresh_rate']
        refresh_counter = state['refresh_counter']
        daily_ret = state['daily_ret']

        # position
        position_hist_list = []
        for each in position_hist:
            for key, val in each[1].items():
                position_hist_list.append([each[0], strategy_name, key, val])
        position_hist_df = pd.DataFrame(position_hist_list,
                                        columns=[
                                            'trade_date', 'strategy_name',
                                            'fund_code', 'fund_weight'
                                        ])

        save_into_db(
            position_hist_df, 'FOF_position_source', {
                'trade_date': VARCHAR(8),
                'strategy_name': VARCHAR(32),
                'fund_code': VARCHAR(32),
                'fund_weight': DECIMAL(10, 6)
            }, 'xiaoyi', 'replace')
        execute_session(SQL_MERGE_POSITION, 'xiaoyi')

        # rebalance
        rebalance_hist_list = []
        for each in rebalance_hist:
            for key, val in each[1].items():
                if val > 0:
                    direction = 'LONG'
                elif val < 0:
                    direction = 'SHORT'
                rebalance_hist_list.append(
                    [each[0], strategy_name, key, direction, val])
        rebalance_hist_df = pd.DataFrame(rebalance_hist_list,
                                         columns=[
                                             'trade_date', 'strategy_name',
                                             'fund_code', 'direction',
                                             'weight_change'
                                         ])
        save_into_db(
            rebalance_hist_df, 'FOF_rebalance_source', {
                'trade_date': VARCHAR(8),
                'strategy_name': VARCHAR(32),
                'fund_code': VARCHAR(32),
                'direction': VARCHAR(8),
                'weight_change': DECIMAL(10, 6)
            }, 'xiaoyi', 'replace')
        execute_session(SQL_MERGE_REBALANCE, 'xiaoyi')

        # refresh
        refresh_state_df = pd.DataFrame([[
            strategy_name, refresh_rate, refresh_counter,
            dt.datetime.today().strftime('%Y%m%d')
        ]],
                                        columns=[
                                            'strategy_name', 'refresh_rate',
                                            'refresh_counter', 'update_date'
                                        ])
        save_into_db(
            refresh_state_df, 'FOF_refresh_state_source', {
                'strategy_name': VARCHAR(32),
                'refresh_rate': INT,
                'refresh_counter': INT,
                'update_date': VARCHAR(32)
            }, 'xiaoyi', 'replace')
        execute_session(SQL_MERGE_REFRESH_STATE, 'xiaoyi')

        # daily_ret
        daily_ret_df = pd.DataFrame(daily_ret, columns=['trade_date', 'ret'])
        daily_ret_df.loc[:, 'strategy_name'] = strategy_name

        save_into_db(
            daily_ret_df, 'FOF_daily_ret_source', {
                'strategy_name': VARCHAR(32),
                'trade_date': VARCHAR(8),
                'ret': DECIMAL(10, 6)
            }, 'xiaoyi', 'replace')
        execute_session(SQL_MERGE_DAILY_RET, 'xiaoyi')
示例#4
0
            
    y_pred = model.predict(X)
    y_proba = model.predict_proba(X)
    y_max_proba = y_proba.max(axis = 1)
    
    stock_label = pd.DataFrame([target_date_list,
                                y_pred.tolist(),
                                y_max_proba.tolist()],index = ['target_date','signal_type','signal_prob']).T
    stock_label['stock_code'] = stk
    stock_label['pred_dt'] = today
    signals = pd.concat([signals,stock_label])
    print '%s stock finished'%stk
    
dtype_dict = {'stock_code':VARCHAR(10),
              'target_date':VARCHAR(16),
              'pred_dt':DATETIME,
              'signal_type':INT, # (0为震荡,1为趋势)
              'signal_prob':DECIMAL(10,6)}
save_into_db(signals,'LDH_pattern_pred_minute_source',dtype_dict,'gb','replace')
SQL_MERGE_SIGNALS = '''
MERGE INTO LDH_pattern_pred_minute as T
USING LDH_pattern_pred_minute_source as S
ON (T.target_date = S.target_date AND T.stock_code = S.stock_code)
WHEN NOT MATCHED BY TARGET
THEN INSERT 
(stock_code,target_date,pred_dt,signal_type,signal_prob)
VALUES
(S.stock_code,S.target_date,S.pred_dt,S.signal_type,S.signal_prob);
'''
execute_session(SQL_MERGE_SIGNALS,'gb')