def test_lonlat2px_gt(self): row, col = gt.lonlat2px_gt(self.img, self.lon, self.lat, self.lon_min, self.lat_min, self.lon_max, self.lat_max) assert self.row == row assert self.col == col
def bbox_img(source_file, region, fileExtension, shapefile=None): """ Clips bounding box out of image file and returns data as numpy.ndarray Parameters ---------- source_file : str Path to source file. region : str Identifier of the region in the shapefile. If the default shapefile is used, this would be the FIPS country code. fileExtension : str Filetype (e.g. png, tif). shapefile : str, optional Path to shape file, uses "world country admin boundary shapefile" by default. Returns ------- data : dict of numpy.arrays Clipped image (grey values). lon_new : numpy.array Longitudes of the clipped image. lat_new : numpy.array Latitudes of the clipped image. timestamp : datetime.date Timestamp of the image. metadata : dict of strings Metadata from source netCDF file. """ orig_img = Image.open(source_file) lon_min_src, lat_min_src, lon_max_src, lat_max_src = \ get_layer_extent(source_file) if region == 'global': lon_min = -180 lon_max = 180 lat_min = -90 lat_max = 90 else: shp = Shape(region, shapefile) lon_min = shp.bbox[0] lon_max = shp.bbox[2] lat_min = shp.bbox[1] lat_max = shp.bbox[3] d = lon_max - lon_min # countries that cross the international dateline (maybe more!) if region in ['NZ', 'RS', 'US']: lon_min, lon_max = dateline_country(region) # get 2 pairs of points (upper left, lower right of bbox) if d > 350 and region not in ['AY', 'global']: if fileExtension in ['.tif', '.tiff', '.TIF', '.TIFF']: if (round(lon_max_src - lon_min_src) == 360.0 and round(lat_max_src - lat_min_src) == 180.0): orig_img = rearrange_img(orig_img) row_min, col_min = lonlat2px_rearr(orig_img, lon_min, lat_max) row_max, col_max = lonlat2px_rearr(orig_img, lon_max, lat_min) img = orig_img.crop( (int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) else: print 'Rearranging is only possible for global imagefiles.' return else: orig_img = rearrange_img(orig_img) row_min, col_min = lonlat2px_rearr(orig_img, lon_min, lat_max) row_max, col_max = lonlat2px_rearr(orig_img, lon_max, lat_min) img = orig_img.crop( (int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) elif fileExtension in ['.tif', '.tiff', '.TIF', '.TIFF']: row_min, col_min = lonlat2px_gt(orig_img, lon_min, lat_max, lon_min_src, lat_min_src, lon_max_src, lat_max_src) row_max, col_max = lonlat2px_gt(orig_img, lon_max, lat_min, lon_min_src, lat_min_src, lon_max_src, lat_max_src) # crop image img = orig_img.crop( (int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) else: row_min, col_min = lonlat2px(orig_img, lon_min, lat_max) row_max, col_max = lonlat2px(orig_img, lon_max, lat_min) # crop image img = orig_img.crop( (int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) # get data values from image data = {'dataset': np.array(img)} # lon_new, lat_new lon_px = np.arange(int(math.floor(col_min)), int(math.ceil(col_max))) lat_px = np.arange(int(math.floor(row_min)), int(math.ceil(row_max))) if region in ['NZ', 'RS', 'US']: lon_new, lat_new = px2lonlat_rearr(orig_img, lon_px, lat_px) elif fileExtension in ['.tif', '.tiff', '.TIF', '.TIFF']: lon_new, lat_new = px2lonlat_gt(orig_img, lon_px, lat_px, lon_min_src, lat_min_src, lon_max_src, lat_max_src) else: lon_new, lat_new = px2lonlat(orig_img, lon_px, lat_px) # timestamp timestamp = None # metadata metadata = None # move coordinates to pixel center if lon_new.size > 2: lon_new += (lon_new[1] - lon_new[0]) / 2 if lat_new.size > 2: lat_new += (lat_new[1] - lat_new[0]) / 2 return data, lon_new, lat_new, timestamp, metadata
def bbox_img(source_file, region, fileExtension, shapefile=None): """ Clips bounding box out of image file and returns data as numpy.ndarray Parameters ---------- source_file : str Path to source file. region : str Identifier of the region in the shapefile. If the default shapefile is used, this would be the FIPS country code. fileExtension : str Filetype (e.g. png, tif). shapefile : str, optional Path to shape file, uses "world country admin boundary shapefile" by default. Returns ------- data : dict of numpy.arrays Clipped image (grey values). lon_new : numpy.array Longitudes of the clipped image. lat_new : numpy.array Latitudes of the clipped image. timestamp : datetime.date Timestamp of the image. metadata : dict of strings Metadata from source netCDF file. """ orig_img = Image.open(source_file) lon_min_src, lat_min_src, lon_max_src, lat_max_src = \ get_layer_extent(source_file) if region == 'global': lon_min = -180 lon_max = 180 lat_min = -90 lat_max = 90 else: shp = Shape(region, shapefile) lon_min = shp.bbox[0] lon_max = shp.bbox[2] lat_min = shp.bbox[1] lat_max = shp.bbox[3] d = lon_max - lon_min # countries that cross the international dateline (maybe more!) if region in ['NZ', 'RS', 'US']: lon_min, lon_max = dateline_country(region) # get 2 pairs of points (upper left, lower right of bbox) if d > 350 and region not in ['AY', 'global']: if fileExtension in ['.tif', '.tiff', '.TIF', '.TIFF']: if (round(lon_max_src - lon_min_src) == 360.0 and round(lat_max_src - lat_min_src) == 180.0): orig_img = rearrange_img(orig_img) row_min, col_min = lonlat2px_rearr(orig_img, lon_min, lat_max) row_max, col_max = lonlat2px_rearr(orig_img, lon_max, lat_min) img = orig_img.crop((int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) else: print 'Rearranging is only possible for global imagefiles.' return else: orig_img = rearrange_img(orig_img) row_min, col_min = lonlat2px_rearr(orig_img, lon_min, lat_max) row_max, col_max = lonlat2px_rearr(orig_img, lon_max, lat_min) img = orig_img.crop((int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) elif fileExtension in ['.tif', '.tiff', '.TIF', '.TIFF']: row_min, col_min = lonlat2px_gt(orig_img, lon_min, lat_max, lon_min_src, lat_min_src, lon_max_src, lat_max_src) row_max, col_max = lonlat2px_gt(orig_img, lon_max, lat_min, lon_min_src, lat_min_src, lon_max_src, lat_max_src) # crop image img = orig_img.crop((int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) else: row_min, col_min = lonlat2px(orig_img, lon_min, lat_max) row_max, col_max = lonlat2px(orig_img, lon_max, lat_min) # crop image img = orig_img.crop((int(math.floor(col_min)), int(math.floor(row_min)), int(math.ceil(col_max)), int(math.ceil(row_max)))) # get data values from image data = {'dataset': np.array(img)} # lon_new, lat_new lon_px = np.arange(int(math.floor(col_min)), int(math.ceil(col_max))) lat_px = np.arange(int(math.floor(row_min)), int(math.ceil(row_max))) if region in ['NZ', 'RS', 'US']: lon_new, lat_new = px2lonlat_rearr(orig_img, lon_px, lat_px) elif fileExtension in ['.tif', '.tiff', '.TIF', '.TIFF']: lon_new, lat_new = px2lonlat_gt(orig_img, lon_px, lat_px, lon_min_src, lat_min_src, lon_max_src, lat_max_src) else: lon_new, lat_new = px2lonlat(orig_img, lon_px, lat_px) # timestamp timestamp = None # metadata metadata = None # move coordinates to pixel center if lon_new.size > 2: lon_new += (lon_new[1] - lon_new[0]) / 2 if lat_new.size > 2: lat_new += (lat_new[1] - lat_new[0]) / 2 return data, lon_new, lat_new, timestamp, metadata