def inicializar_pointnet(): print("Loading 3D Object Classification Model:") start = time.time() global classifier classifier = PointNetCls(k=2) #IMP, 2 é o número de classes, depois alterar. classifier.cuda() #classifier.load_state_dict(torch.load('/home/socialab/FCHarDNet/cls_model_40.pth')) classifier.load_state_dict(torch.load('/home/socialab/human_vision/FCHarDNet/cls_model_40.pth')) classifier.eval() end = time.time() print(" (time): " + str(end-start))
print('classes', num_classes) try: os.makedirs(opt.outf) except OSError: pass classifier = PointNetCls(k=num_classes, feature_transform=opt.feature_transform) if opt.model != '': classifier.load_state_dict(torch.load(opt.model)) optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999)) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) classifier.cuda() num_batch = len(dataset) / opt.batchSize for epoch in range(opt.nepoch): scheduler.step() for i, data in enumerate(dataloader, 0): points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() optimizer.zero_grad() classifier = classifier.train() pred, trans, trans_feat = classifier(points) loss = F.nll_loss(pred, target) if opt.feature_transform:
shuffle=True, num_workers=int(opt.workers)) write_log(logfile=logfile, msg=f"number of training examples: {len(dataset)}\nnumber of test example: {len(test_dataset)}") num_classes = len(dataset.classes) write_log(logfile=logfile,msg=f'number of classes {num_classes}') classifier = PointNetCls(k=num_classes, feature_transform=opt.feature_transform) if opt.model != '': classifier.load_state_dict(torch.load(opt.model)) optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999)) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) classifier = classifier.cuda() num_batch = len(dataset) / opt.batchSize for epoch in range(opt.nepoch): scheduler.step() train_loss = [] train_acc = [] for i, data in enumerate(dataloader, 0): points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() optimizer.zero_grad()
def our_main(): from utils.show3d_balls import showpoints parser = argparse.ArgumentParser() parser.add_argument( '--batchSize', type=int, default=32, help='input batch size') parser.add_argument( '--num_points', type=int, default=2000, help='input batch size') parser.add_argument( '--workers', type=int, help='number of data loading workers', default=4) parser.add_argument( '--nepoch', type=int, default=250, help='number of epochs to train for') parser.add_argument('--outf', type=str, default='cls', help='output folder') parser.add_argument('--model', type=str, default='', help='model path') parser.add_argument('--dataset', type=str, required=True, help="dataset path") parser.add_argument('--dataset_type', type=str, default='shapenet', help="dataset type shapenet|modelnet40") parser.add_argument('--feature_transform', action='store_true', help="use feature transform") opt = parser.parse_args() print(opt) blue = lambda x: '\033[94m' + x + '\033[0m' opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) if opt.dataset_type == 'shapenet': dataset = ShapeNetDataset( root=opt.dataset, classification=True, npoints=opt.num_points) test_dataset = ShapeNetDataset( root=opt.dataset, classification=True, split='test', npoints=opt.num_points, data_augmentation=False) elif opt.dataset_type == 'modelnet40': dataset = ModelNetDataset( root=opt.dataset, npoints=opt.num_points, split='trainval') test_dataset = ModelNetDataset( root=opt.dataset, split='test', npoints=opt.num_points, data_augmentation=False) else: exit('wrong dataset type') dataloader = torch.utils.data.DataLoader( dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) testdataloader = torch.utils.data.DataLoader( test_dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) print(len(dataset), len(test_dataset)) num_classes = len(dataset.classes) print('classes', num_classes) try: os.makedirs(opt.outf) except OSError: pass classifier = PointNetCls(k=num_classes, feature_transform=opt.feature_transform) if opt.model != '': classifier.load_state_dict(torch.load(opt.model)) optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999)) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) classifier.cuda() num_batch = len(dataset) / opt.batchSize ## python train_classification.py --dataset ../dataset --nepoch=4 --dataset_type shapenet for epoch in range(opt.nepoch): scheduler.step() for i, data in enumerate(dataloader, 0): points, target = data target = target[:, 0] showpoints(points[0].numpy()) points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() optimizer.zero_grad() classifier = classifier.train() pred, trans, trans_feat = classifier(points) loss = F.nll_loss(pred, target) if opt.feature_transform: loss += feature_transform_regularizer(trans_feat) * 0.001 loss.backward() optimizer.step() pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.data).cpu().sum() print('[%d: %d/%d] train loss: %f accuracy: %f' % (epoch, i, num_batch, loss.item(), correct.item() / float(opt.batchSize))) if i % 10 == 0: j, data = next(enumerate(testdataloader, 0)) points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() classifier = classifier.eval() pred, _, _ = classifier(points) loss = F.nll_loss(pred, target) pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.data).cpu().sum() print('[%d: %d/%d] %s loss: %f accuracy: %f' % (epoch, i, num_batch, blue('test'), loss.item(), correct.item()/float(opt.batchSize))) torch.save(classifier.state_dict(), '%s/cls_model_%d.pth' % (opt.outf, epoch)) total_correct = 0 total_testset = 0 for i,data in tqdm(enumerate(testdataloader, 0)): points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() classifier = classifier.eval() pred, _, _ = classifier(points) pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.data).cpu().sum() total_correct += correct.item() total_testset += points.size()[0] print("final accuracy {}".format(total_correct / float(total_testset)))
except OSError: pass # 3. 定义网络, 分类任务的网络, 具体在model.py中的class PointNetCls(nn.Module) classifier = PointNetCls(k=num_classes, feature_transform=opt.feature_transform) print(classifier) # 打印出来可以观察到详细的网络结构 if opt.model != '': # 如果模型存在就导入 classifier.load_state_dict(torch.load(opt.model)) # 4. 定义优化算法, optimizer 是 optim类 创建的实例, scheduler 为了调整学习率 optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999)) # 使用Adam算法, betas(β)为超参数 scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) # scheduler.step()调用step_size次, 学习率才会调整一次 classifier.cuda() # 让模型在cuda上训练 print(len(dataset)) # 12137的训练数据集的迭代器, 每个迭代器32个3维模型 相当于dataset中一共读入了12137*32=388384个三维模型 num_batch = len(dataset) / opt.batchSize # 所以每次参与训练的迭代器数量为 12137 / 32= 379.28个迭代器, 三维模型为 379*32=12128 print('num_batch: %d' % (num_batch)) # 5. 正式开始训练 for epoch in range(opt.nepoch): # opt.nepoch = 5, 训练5次 scheduler.step() # 更新一下学习率 每step_size=20 调整一次 # n = 0 for i, data in enumerate(dataloader, 0): # enumerate在字典上是枚举、列举的意思, enumerate参数为可遍历/可迭代的对象(如列表、字符串), 后面的0是索引从0开始 points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() # 复制到cuda上进行计算