示例#1
0
def extract_label_points(pcd_file, label_file):
    points = np.asarray(open3d.io.read_point_cloud(pcd_file).points)
    colors = np.zeros(points.shape, dtype=int)
    points_label = np.zeros(points.shape[0], dtype=np.uint8)

    xyz = torch.from_numpy(np.expand_dims(points,
                                          axis=0)).type(torch.FloatTensor)
    xyz = xyz.to("cuda", non_blocking=True)
    labels = load_label_file(label_file)

    for label in labels:
        if (int(label[0]) == 1):  # vehicle
            center = np.array(
                [float(label[2]),
                 float(label[3]),
                 float(label[7]) * 0.5])  #float(label[4])])
            size = np.array(
                [float(label[5]),
                 float(label[6]),
                 float(label[7])])
            heading = float(label[8])

            center_shift = np.array([
                size[0] * np.cos(heading) * 0.5,
                size[0] * np.sin(heading) * 0.5, 0
            ])
            proposal_centers = np.asarray(
                [[center + center_shift, center - center_shift]])

            idx = pointnet_utils.ball_query(
                size[2] * 0.5, args.nsample, xyz,
                torch.from_numpy(proposal_centers).type(torch.Tensor).to(
                    "cuda", non_blocking=True))
            idx = np.squeeze(idx.cpu().numpy())

            idx1 = np.unique(idx[0])
            idx2 = np.unique(idx[1])

            if idx1.size > idx2.size:
                # colors[idx1] = [255, 0, 0]
                points_label[idx1] = 1
            else:
                # colors[idx2] = [255, 0, 0]
                points_label[idx2] = 1

    return points, colors, points_label
示例#2
0
def ball_query(p: torch.Tensor, q: torch.Tensor, r: float, k: int) -> torch.Tensor:
    """Point cloud ball (sphere) query.

    Args:
        p: Reference point cloud of shape [batch_size, dim, num_point].
        q: Query Point cloud of shape [batch_size, dim, num_query].
        r (float): Ball radius.
        k (int): Maximum group size.

    Returns:
        Indices tensor of shape [batch_size, num_query, k].
    """

    p_t = p.transpose(1, 2).contiguous()
    q_t = q.transpose(1, 2).contiguous()
    idx = _PU.ball_query(r, k, p_t, q_t)
    return idx
示例#3
0
    def forward(self, pos1, pos2, feature1, feature2):
        """
            Feature propagation from xyz2 (less points) to xyz1 (more points)
        Inputs:
            xyz1: (batch_size, 3, npoint1)
            xyz2: (batch_size, 3, npoint2)
            feat1: (batch_size, channel1, npoint1) features for xyz1 points (earlier layers, more points)
            feat2: (batch_size, channel1, npoint2) features for xyz2 points
        Output:
            feat1_new: (batch_size, npoint2, mlp[-1] or mlp2[-1] or channel1+3)
            TODO: Add support for skip links. Study how delta(XYZ) plays a role in feature updating.
        """
        pos1_t = pos1.permute(0, 2, 1).contiguous()
        pos2_t = pos2.permute(0, 2, 1).contiguous()
        B, C, N = pos1.shape
        if self.knn:
            _, idx = pointutils.knn(self.nsample, pos1_t, pos2_t)  # [B, N1, S]
        else:
            idx = pointutils.ball_query(self.radius, self.nsample, pos2_t,
                                        pos1_t)

        pos2_grouped = pointutils.grouping_operation(pos2, idx)
        pos_diff = pos2_grouped - pos1.view(B, -1, N, 1)  # [B, 3, N1, S]

        feat2_grouped = pointutils.grouping_operation(feature2, idx)
        feat_new = torch.cat([feat2_grouped, pos_diff],
                             dim=1)  # [B, C1+3, N1, S]

        for conv in self.mlp1_convs:
            feat_new = conv(feat_new)

        # max pooling
        feat_new = feat_new.max(-1)[0]  # [B, mlp1[-1], N1]

        # concatenate feature in early layer
        if feature1 is not None:
            feat_new = torch.cat([feat_new, feature1],
                                 dim=1)  # [B, mlp1[-1]+feat1_channel, N1]

        for conv in self.mlp2_convs:
            feat_new = conv(feat_new)

        return feat_new
示例#4
0
    def get_uniform_loss(self,
                         pcd,
                         percentage=[0.004, 0.006, 0.008, 0.010, 0.012],
                         radius=1.0):
        B, N, C = pcd.shape[0], pcd.shape[1], pcd.shape[2]
        npoint = int(N * 0.05)
        loss = 0
        further_point_idx = pn2_utils.furthest_point_sample(
            pcd.permute(0, 2, 1).contiguous(), npoint)
        new_xyz = pn2_utils.gather_operation(
            pcd.permute(0, 2, 1).contiguous(), further_point_idx)  # B,C,N
        for p in percentage:
            nsample = int(N * p)
            r = math.sqrt(p * radius)
            disk_area = math.pi * (radius**2) / N

            idx = pn2_utils.ball_query(r, nsample, pcd.contiguous(),
                                       new_xyz.permute(
                                           0, 2, 1).contiguous())  #b N nsample

            expect_len = math.sqrt(disk_area)

            grouped_pcd = pn2_utils.grouping_operation(
                pcd.permute(0, 2, 1).contiguous(), idx)  #B C N nsample
            grouped_pcd = grouped_pcd.permute(0, 2, 3, 1)  #B N nsample C

            grouped_pcd = torch.cat(torch.unbind(grouped_pcd, dim=1),
                                    dim=0)  #B*N nsample C

            dist, _ = self.knn_uniform(grouped_pcd, grouped_pcd)
            #print(dist.shape)
            uniform_dist = dist[:, :, 1:]  #B*N nsample 1
            uniform_dist = torch.abs(uniform_dist + 1e-8)
            uniform_dist = torch.mean(uniform_dist, dim=1)
            uniform_dist = (uniform_dist - expect_len)**2 / (expect_len + 1e-8)
            mean_loss = torch.mean(uniform_dist)
            mean_loss = mean_loss * math.pow(p * 100, 2)
            loss += mean_loss
        return loss / len(percentage)
示例#5
0
    def forward(self, pos1, pos2, feature1, feature2):
        """
        Input:
            xyz1: (batch_size, 3, npoint)
            xyz2: (batch_size, 3, npoint)
            feat1: (batch_size, channel, npoint)
            feat2: (batch_size, channel, npoint)
        Output:
            xyz1: (batch_size, 3, npoint)
            feat1_new: (batch_size, mlp[-1], npoint)
        """
        pos1_t = pos1.permute(0, 2, 1).contiguous()
        pos2_t = pos2.permute(0, 2, 1).contiguous()
        B, N, C = pos1_t.shape
        if self.knn:
            _, idx = pointutils.knn(self.nsample, pos1_t, pos2_t)  # [B, N, S]
        else:
            idx = pointutils.ball_query(self.radius, self.nsample, pos2_t,
                                        pos1_t)

        pos2_grouped = pointutils.grouping_operation(pos2, idx)  # [B, 3, N, S]
        pos_diff = pos2_grouped - pos1.view(B, -1, N, 1)  # [B, 3, N, S]

        feat2_grouped = pointutils.grouping_operation(feature2,
                                                      idx)  # [B, C, N, S]
        if self.corr_func == 'concat':
            feat_diff = torch.cat([
                feat2_grouped,
                feature1.view(B, -1, N, 1).repeat(1, 1, 1, self.nsample)
            ],
                                  dim=1)  # [B, 2*C, N, S]

        feat1_new = torch.cat([pos_diff, feat_diff], dim=1)  # [B, 2*C+3, N, S]
        for i, conv in enumerate(self.mlp_convs):
            bn = self.mlp_bns[i]
            feat1_new = F.relu(bn(conv(feat1_new)))

        feat1_new = torch.max(feat1_new, -1)[0]  # [B, mlp[-1], npoint]
        return pos1, feat1_new