def get_end_points(self, inputs): end_points = {} print(inputs) l0_xyz, l0_points = inputs print("reached this") l1_xyz, l1_points, l1_indices = self.l1([l0_xyz, l0_points]) l2_xyz, l2_points, l2_indices = self.l2([l1_xyz, l1_points]) l3_xyz, l3_points, l3_indices = self.l3([l2_xyz, l2_points]) l4_xyz, l4_points, l4_indices = self.l4([l3_xyz, l3_points]) end_points['l0_xyz'] = l0_xyz # Feature Propagation layers l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256, 256], self.is_training, self.bn_decay, scope='fa_layer1') l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256, 256], self.is_training, self.bn_decay, scope='fa_layer2') l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], self.is_training, self.bn_decay, scope='fa_layer3') l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128, 128, 128], self.is_training, self.bn_decay, scope='fa_layer4') # FC layers net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=self.is_training, scope='fc1', bn_decay=self.bn_decay) end_points['feats'] = net return end_points
def call(self, inputs, **kwargs): l0_xyz = inputs l0_points = None l1_xyz, l1_points, l1_indices = self.l1([l0_xyz, tf.zeros([0])]) print("l1_points shape: ", l1_points.shape) l2_xyz, l2_points, l2_indices = self.l2([l1_xyz, l1_points]) print("l2_points shape: ", l2_points.shape) l3_xyz, l3_points, l3_indices = self.l3([l2_xyz, l2_points]) print("l3_points shape: ", l3_points.shape) l4_xyz, l4_points, l4_indices = self.l4([l3_xyz, l3_points]) print("l4_points shape: ", l4_points.shape) # Feature Propagation layers l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256, 256], self.is_training, self.bn_decay, scope='fa_layer1') l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256, 256], self.is_training, self.bn_decay, scope='fa_layer2') l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], self.is_training, self.bn_decay, scope='fa_layer3') l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128, 128, 128], self.is_training, self.bn_decay, scope='fa_layer4') # FC layers net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=self.is_training, scope='fc1', bn_decay=self.bn_decay) net = tf_util.dropout(net, keep_prob=0.5, is_training=self.is_training, scope='dp1') out = tf_util.conv1d(net, self.num_class, 1, padding='VALID', activation_fn=None, scope='fc2') return out
def get_model(point_cloud: tf.Tensor, features: tf.Tensor, is_training: tf.Variable, num_class: int, bn_decay=None) -> \ [tf.Tensor, tf.Tensor]: """ Return a PointNet++ model using additional features as input for the first layer :param point_cloud: Input points for the model (BxNx3) :param features: The features for each point (BxNxk) :param is_training: Flag whether or not the parameters should be trained or not :param num_class: Number of classes (e.g. 21 for ScanNet) :param bn_decay: BatchNorm decay :return: predictions for each point (B x N x num_class) """ end_points = {} l0_xyz = point_cloud l0_points = features end_points['l0_xyz'] = l0_xyz # Layer 1 l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32, 32, 64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1') l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64, 64, 128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2') l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128, 128, 256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3') l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256, 256, 512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4') # Feature Propagation layers l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256, 256], is_training, bn_decay, scope='fa_layer1') l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256, 256], is_training, bn_decay, scope='fa_layer2') l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], is_training, bn_decay, scope='fa_layer3') l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128, 128, 128], is_training, bn_decay, scope='fa_layer4') # Full connected layers net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay) end_points['feats'] = net net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1') net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2') return net, end_points
def get_model(point_cloud, is_training, num_class, bn_decay=None): """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """ batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value end_points = {} l0_xyz = point_cloud l0_points = None end_points['l0_xyz'] = l0_xyz # Layer 1 l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1, nsample=32, mlp=[32, 32, 64], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1') l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=256, radius=0.2, nsample=32, mlp=[64, 64, 128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2') l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=64, radius=0.4, nsample=32, mlp=[128, 128, 256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer3') l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=16, radius=0.8, nsample=32, mlp=[256, 256, 512], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer4') # Feature Propagation layers l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [256, 256], is_training, bn_decay, scope='fa_layer1') l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256, 256], is_training, bn_decay, scope='fa_layer2') l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], is_training, bn_decay, scope='fa_layer3') l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128, 128, 128], is_training, bn_decay, scope='fa_layer4') # FC layers net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay) end_points['feats'] = net net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1') net = tf_util.conv1d(net, num_class, 1, padding='VALID', activation_fn=None, scope='fc2') return net, end_points