示例#1
0
文件: remap.py 项目: howff/polar2grid
 def __init__(self, grid_configs=[],
              overwrite_existing=False, keep_intermediate=False, exit_on_error=True, **kwargs):
     self.grid_manager = GridManager(*grid_configs)
     self.overwrite_existing = overwrite_existing
     self.keep_intermediate = keep_intermediate
     self.exit_on_error = exit_on_error
     self.methods = {
         "ewa": self._remap_scene_ewa,
         "nearest": self._remap_scene_nearest,
         "sensor": self._remap_scene_sensor,
     }
     self.ll2cr_cache = {}
示例#2
0
def _get_legacy_and_yaml_areas(
    grid_configs: list[str,
                       ...]) -> tuple[GridManager, dict[str, AreaDefinition]]:
    if "grids.conf" in grid_configs:
        logger.debug(
            "Replacing 'grids.conf' with builtin YAML grid configuration file."
        )
        grid_configs[grid_configs.index("grids.conf")] = GRIDS_YAML_FILEPATH
    if not grid_configs:
        grid_configs = [GRIDS_YAML_FILEPATH]
    p2g_grid_configs = [x for x in grid_configs if x.endswith(".conf")]
    pyresample_area_configs = [
        x for x in grid_configs if not x.endswith(".conf")
    ]
    if p2g_grid_configs:
        grid_manager = GridManager(*p2g_grid_configs)
    else:
        grid_manager = {}

    if pyresample_area_configs:
        yaml_areas = parse_area_file(pyresample_area_configs)
        yaml_areas = {x.area_id: x for x in yaml_areas}
    else:
        yaml_areas = {}

    return grid_manager, yaml_areas
示例#3
0
 def __init__(self, grid_configs=[],
              overwrite_existing=False, keep_intermediate=False, exit_on_error=True, **kwargs):
     self.grid_manager = GridManager(*grid_configs)
     self.overwrite_existing = overwrite_existing
     self.keep_intermediate = keep_intermediate
     self.exit_on_error = exit_on_error
     self.methods = {
         "ewa": self._remap_scene_ewa,
         "nearest": self._remap_scene_nearest,
     }
     self.ll2cr_cache = {}
示例#4
0
def _get_legacy_and_custom_areas(grid_configs):
    p2g_grid_configs = [x for x in grid_configs if x.endswith('.conf')]
    pyresample_area_configs = [x for x in grid_configs if not x.endswith('.conf')]
    if not grid_configs or p2g_grid_configs:
        # if we were given p2g grid configs or we weren't given any to choose from
        from polar2grid.grids import GridManager
        grid_manager = GridManager(*p2g_grid_configs)
    else:
        grid_manager = {}

    if pyresample_area_configs:
        from pyresample.utils import parse_area_file
        custom_areas = parse_area_file(pyresample_area_configs)
        custom_areas = {x.area_id: x for x in custom_areas}
    else:
        custom_areas = {}

    return grid_manager, custom_areas
示例#5
0
class Remapper(object):
    def __init__(self,
                 grid_configs=[],
                 overwrite_existing=False,
                 keep_intermediate=False,
                 exit_on_error=True,
                 **kwargs):
        self.grid_manager = GridManager(*grid_configs)
        self.overwrite_existing = overwrite_existing
        self.keep_intermediate = keep_intermediate
        self.exit_on_error = exit_on_error
        self.methods = {
            "ewa": self._remap_scene_ewa,
            "nearest": self._remap_scene_nearest,
            "sensor": self._remap_scene_sensor,
        }
        self.ll2cr_cache = {}

    def highest_resolution_swath_definition(self, swath_scene_or_product):
        if isinstance(swath_scene_or_product, SwathScene):
            swath_defs = [
                product_def["swath_definition"]
                for product_def in swath_scene_or_product.values()
            ]
            # choose the highest resolution swath definition navigation (the one with the most columns)
            swath_def = max(swath_defs, key=lambda d: d["swath_columns"])
        else:
            # given a single product
            swath_def = swath_scene_or_product["swath_definition"]
        return swath_def

    def remap_scene(self, swath_scene, grid_name, **kwargs):
        method = kwargs.pop("remap_method", "ewa")
        LOG.debug("Remap scene being run with method '%s'", method)
        if method not in self.methods:
            LOG.error("Unknown remapping method '%s'", method)
            raise ValueError("Unknown remapping method '%s'" % (method, ))

        if method == "sensor":
            if grid_name != "sensor":
                raise ValueError(
                    "'sensor' resampling only supports the 'sensor' grid")
            else:
                # grid def isn't used by 'sensor' resampling
                grid_def = None
        else:
            grid_def = self.grid_manager.get_grid_definition(grid_name)
        func = self.methods[method]

        # FUTURE: Make this a keyword and add the logic to support it
        if kwargs.get("share_dynamic_grids", True) and method != "sensor":
            # Let's run ll2cr to fill in any parameters we need to and decide if the data fits in the grid
            best_swath_def = self.highest_resolution_swath_definition(
                swath_scene)
            LOG.debug(
                "Running ll2cr on the highest resolution swath to determine if it fits"
            )
            try:
                self.run_ll2cr(best_swath_def,
                               grid_def,
                               swath_usage=kwargs.get("swath_usage",
                                                      SWATH_USAGE))
                grid_str = str(grid_def).replace("\n", "\n\t")
                LOG.info("Grid information:\n\t%s", grid_str)
            except StandardError:
                LOG.error("Remapping error")
                raise

        return func(swath_scene, grid_def, **kwargs)

    def run_ll2cr(self,
                  swath_definition,
                  grid_definition,
                  swath_usage=SWATH_USAGE):
        geo_id = swath_definition["swath_name"]
        grid_name = grid_definition["grid_name"]
        if (geo_id, grid_name) in self.ll2cr_cache:
            return self.ll2cr_cache[(geo_id, grid_name)]
        LOG.debug("Swath '%s' -> Grid '%s'", geo_id, grid_name)

        rows_fn = "ll2cr_rows_%s_%s.dat" % (grid_name, geo_id)
        cols_fn = "ll2cr_cols_%s_%s.dat" % (grid_name, geo_id)
        # lon_arr = swath_definition.get_longitude_array()
        # lat_arr = swath_definition.get_latitude_array()

        if os.path.isfile(rows_fn):
            if not self.overwrite_existing:
                LOG.error("Intermediate remapping file already exists: %s" %
                          (rows_fn, ))
                raise RuntimeError(
                    "Intermediate remapping file already exists: %s" %
                    (rows_fn, ))
            else:
                LOG.warning(
                    "Intermediate remapping file already exists, will overwrite: %s",
                    rows_fn)
        if os.path.isfile(cols_fn):
            if not self.overwrite_existing:
                LOG.error("Intermediate remapping file already exists: %s" %
                          (cols_fn, ))
                raise RuntimeError(
                    "Intermediate remapping file already exists: %s" %
                    (cols_fn, ))
            else:
                LOG.warning(
                    "Intermediate remapping file already exists, will overwrite: %s",
                    cols_fn)
        try:
            rows_arr = swath_definition.copy_latitude_array(filename=rows_fn,
                                                            read_only=False)
            cols_arr = swath_definition.copy_longitude_array(filename=cols_fn,
                                                             read_only=False)
            points_in_grid, _, _ = ll2cr.ll2cr(
                cols_arr,
                rows_arr,
                grid_definition,
                fill_in=swath_definition["fill_value"])
            grid_str = str(grid_definition).replace("\n", "\n\t")
            LOG.debug("Grid information:\n\t%s", grid_str)
        except StandardError:
            LOG.error(
                "Unexpected error encountered during ll2cr gridding for %s -> %s",
                geo_id, grid_name)
            LOG.debug("ll2cr error exception: ", exc_info=True)
            self._safe_remove(rows_fn, cols_fn)
            raise

        # if 5% of the grid will have data in it then it fits
        fraction_in = points_in_grid / float(rows_arr.size)
        swath_used = fraction_in > swath_usage
        if not swath_used:
            self._safe_remove(rows_fn, cols_fn)
            LOG.error(
                "Data does not fit in grid %s because it only %f%% of the swath is used"
                % (grid_name, fraction_in * 100))
            raise RuntimeError("Data does not fit in grid %s" % (grid_name, ))
        else:
            LOG.debug("Data fits in grid %s and uses %f%% of the swath",
                      grid_name, fraction_in * 100)

        self.ll2cr_cache[(geo_id, grid_name)] = (cols_fn, rows_fn)
        return cols_fn, rows_fn

    def _add_prefix(self, prefix, *filepaths):
        return [
            os.path.join(os.path.dirname(x), prefix + os.path.basename(x))
            for x in filepaths
        ]

    def _safe_remove(self, *filepaths):
        if not self.keep_intermediate:
            for fp in filepaths:
                if os.path.isfile(fp):
                    try:
                        LOG.debug("Removing intermediate file '%s'...", fp)
                        os.remove(fp)
                    except OSError:
                        LOG.warning(
                            "Could not remove intermediate files that aren't needed anymore."
                        )
                        LOG.debug("Intermediate output file remove exception:",
                                  exc_info=True)

    def _clear_ll2cr_cache(self):
        # Remove ll2cr files now that we are done with them
        for cols_fn, rows_fn in self.ll2cr_cache.values():
            self._safe_remove(rows_fn, cols_fn)
        self.ll2cr_cache = {}

    def _remap_scene_ewa(self,
                         swath_scene,
                         grid_def,
                         share_dynamic_grids=True,
                         **kwargs):
        # TODO: Make methods more flexible than just a function call
        gridded_scene = GriddedScene()
        grid_name = grid_def["grid_name"]

        # Group products together that shared the same geolocation
        product_groups = defaultdict(list)
        for product_name, swath_product in swath_scene.items():
            swath_def = swath_product["swath_definition"]
            is_cat = swath_product.get('flag_meanings') is not None
            geo_id = swath_def["swath_name"]
            product_groups[(is_cat, geo_id)].append(product_name)

        # keep a copy of the original grid definition
        # if a shared grid definition isn't used then
        # we start from the original
        orig_grid_def = grid_def
        for (is_cat, geo_id), product_names in product_groups.items():
            try:
                LOG.debug(
                    "Running ll2cr on the geolocation data for the following products:\n\t%s",
                    "\n\t".join(sorted(product_names)))
                swath_def = swath_scene[product_names[0]]["swath_definition"]
                if not share_dynamic_grids:
                    grid_def = orig_grid_def.copy()
                cols_fn, rows_fn = self.run_ll2cr(swath_def,
                                                  grid_def,
                                                  swath_usage=kwargs.get(
                                                      "swath_usage",
                                                      SWATH_USAGE))
            except StandardError:
                LOG.error("Remapping error")
                if self.exit_on_error:
                    raise
                continue

            # Run fornav for all of the products at once
            LOG.debug("Running fornav for the following products:\n\t%s",
                      "\n\t".join(sorted(product_names)))
            # XXX: May have to do something smarter if there are float products and integer products together (is_category property on SwathProduct?)
            product_filepaths = list(
                swath_scene.get_data_filepaths(product_names))
            fornav_filepaths = self._add_prefix("grid_%s_" % (grid_name, ),
                                                *product_filepaths)
            for fp in fornav_filepaths:
                if os.path.isfile(fp):
                    if not self.overwrite_existing:
                        LOG.error(
                            "Intermediate remapping file already exists: %s" %
                            (fp, ))
                        raise RuntimeError(
                            "Intermediate remapping file already exists: %s" %
                            (fp, ))
                    else:
                        LOG.warning(
                            "Intermediate remapping file already exists, will overwrite: %s",
                            fp)

            rows_per_scan = swath_def.get("rows_per_scan", 0)
            if rows_per_scan < 2:
                LOG.warning(
                    "Data has less than 2 rows per scan, this is not optimal for the EWA resampling algorithm. All rows will be used as one scan"
                )
                rows_per_scan = swath_def['swath_rows']
            edge_res = swath_def.get("limb_resolution", None)
            fornav_D = kwargs.get("fornav_D", None)
            if fornav_D is None:
                if edge_res is not None:
                    if grid_def.is_latlong:
                        fornav_D = (edge_res / 2) / grid_def.cell_width_meters
                    else:
                        fornav_D = (edge_res / 2) / grid_def["cell_width"]
                    LOG.debug("Fornav 'D' option dynamically set to %f",
                              fornav_D)
                else:
                    fornav_D = 10.0

            mwm = kwargs.get('maximum_weight_mode', False)
            if is_cat and not mwm:
                LOG.debug(
                    "Turning on maximum weight mode in EWA resampling for category products"
                )
                mwm = True

            try:
                # fornav.ms2gt_fornav(
                #     len(product_filepaths),
                #     swath_def["swath_columns"],
                #     swath_def["swath_rows"]/rows_per_scan,
                #     rows_per_scan,
                #     cols_fn,
                #     rows_fn,
                #     product_filepaths,
                #     grid_def["width"],
                #     grid_def["height"],
                #     fornav_filepaths,
                #     swath_data_type_1="f4",
                #     swath_fill_1=swath_scene.get_fill_value(product_names),
                #     grid_fill_1=numpy.nan,
                #     weight_delta_max=fornav_D,
                #     weight_distance_max=kwargs.get("fornav_d", None),
                #     maximum_weight_mode=kwargs.get("maximum_weight_mode", None),
                #     start_scan=(0, 0),
                # )
                cols_array = numpy.memmap(cols_fn,
                                          dtype=numpy.float32,
                                          mode='r',
                                          shape=(swath_def["swath_rows"],
                                                 swath_def["swath_columns"]))
                rows_array = numpy.memmap(rows_fn,
                                          dtype=numpy.float32,
                                          mode='r',
                                          shape=(swath_def["swath_rows"],
                                                 swath_def["swath_columns"]))
                # Assumed that all share the same fill value and data type
                input_dtype = [
                    swath_scene[pn]["data_type"] for pn in product_names
                ]
                input_fill = [
                    swath_scene[pn]["fill_value"] for pn in product_names
                ]
                LOG.debug("Running fornav with D={} and d={}".format(
                    fornav_D, kwargs.get('fornav_d', 1.0)))
                valid_list = fornav.fornav(cols_array,
                                           rows_array,
                                           rows_per_scan,
                                           product_filepaths,
                                           input_dtype=input_dtype,
                                           input_fill=input_fill,
                                           output_arrays=fornav_filepaths,
                                           grid_cols=grid_def["width"],
                                           grid_rows=grid_def["height"],
                                           weight_delta_max=fornav_D,
                                           weight_distance_max=kwargs.get(
                                               "fornav_d", 1.0),
                                           maximum_weight_mode=mwm,
                                           use_group_size=True)
            except StandardError:
                LOG.debug("Remapping exception: ", exc_info=True)
                LOG.error("Remapping error")
                self._safe_remove(*fornav_filepaths)
                if self.exit_on_error:
                    self._clear_ll2cr_cache()
                    raise
                continue

            # Give the gridded product ownership of the remapped data
            for product_name, fornav_fp, valid_points in zip(
                    product_names, fornav_filepaths, valid_list):
                swath_product = swath_scene[product_name]
                gridded_product = GriddedProduct()
                gridded_product.from_swath_product(swath_product)
                gridded_product["grid_definition"] = grid_def
                gridded_product["fill_value"] = numpy.nan
                gridded_product["grid_data"] = fornav_fp

                grid_coverage = kwargs.get("grid_coverage", GRID_COVERAGE)
                grid_covered_ratio = valid_points / float(
                    grid_def["width"] * grid_def["height"])
                grid_covered = grid_covered_ratio > grid_coverage
                if not grid_covered:
                    msg = "EWA resampling only found %f%% of the grid covered (need %f%%) for %s" % (
                        grid_covered_ratio * 100, grid_coverage * 100,
                        product_name)
                    LOG.warning(msg)
                    continue
                LOG.debug(
                    "EWA resampling found %f%% of the grid covered for %s" %
                    (grid_covered_ratio * 100, product_name))
                gridded_scene[product_name] = gridded_product

        self._clear_ll2cr_cache()

        if not gridded_scene:
            self._safe_remove(*fornav_filepaths)
            raise RuntimeError(
                "EWA resampling could not remap any of the data to grid '%s'" %
                (grid_name, ))

        return gridded_scene

    def _remap_scene_nearest(self,
                             swath_scene,
                             grid_def,
                             share_dynamic_grids=True,
                             share_remap_mask=True,
                             **kwargs):
        # TODO: Make methods more flexible than just a function call
        gridded_scene = GriddedScene()
        grid_name = grid_def["grid_name"]

        # Group products together that shared the same geolocation
        product_groups = defaultdict(list)
        for product_name, swath_product in swath_scene.items():
            swath_def = swath_product["swath_definition"]
            geo_id = swath_def["swath_name"]
            product_groups[geo_id].append(product_name)

        grid_coverage = kwargs.get("grid_coverage", GRID_COVERAGE)
        orig_grid_def = grid_def
        for geo_id, product_names in product_groups.items():
            pp_names = "\n\t".join(product_names)
            LOG.debug(
                "Running ll2cr on the geolocation data for the following products:\n\t%s",
                pp_names)
            LOG.debug("Swath name: %s", geo_id)

            # TODO: Move into it's own function if this gets complicated
            # TODO: Add some multiprocessing
            try:
                swath_def = swath_scene[product_names[0]]["swath_definition"]
                if not share_dynamic_grids:
                    grid_def = orig_grid_def.copy()
                cols_fn, rows_fn = self.run_ll2cr(swath_def, grid_def)
            except StandardError:
                LOG.error("Remapping error")
                if self.exit_on_error:
                    raise
                continue

            LOG.debug(
                "Running nearest neighbor for the following products:\n\t%s",
                "\n\t".join(product_names))
            edge_res = swath_def.get("limb_resolution", None)
            if kwargs.get("distance_upper_bound", None) is None:
                if edge_res is not None:
                    if grid_def.is_latlong:
                        distance_upper_bound = (edge_res /
                                                2) / grid_def.cell_width_meters
                    else:
                        distance_upper_bound = (edge_res /
                                                2) / grid_def["cell_width"]
                    LOG.debug("Distance upper bound dynamically set to %f",
                              distance_upper_bound)
                else:
                    distance_upper_bound = 3.0
                kwargs["distance_upper_bound"] = distance_upper_bound

            try:
                grid_x, grid_y = numpy.mgrid[:grid_def["height"], :
                                             grid_def["width"]]
                # we need flattened versions of these
                shape = (swath_def["swath_rows"] *
                         swath_def["swath_columns"], )
                cols_array = numpy.memmap(cols_fn,
                                          shape=shape,
                                          dtype=swath_def["data_type"])
                rows_array = numpy.memmap(rows_fn,
                                          shape=shape,
                                          dtype=swath_def["data_type"])
                good_mask = ~mask_helper(cols_array, swath_def["fill_value"])
                if share_remap_mask:
                    for product_name in product_names:
                        LOG.debug(
                            "Combining data masks before building KDTree for nearest neighbor: %s",
                            product_name)
                        good_mask &= ~swath_scene[product_name].get_data_mask(
                        ).ravel()
                x = _ndim_coords_from_arrays(
                    (cols_array[good_mask], rows_array[good_mask]))
                xi = _ndim_coords_from_arrays((grid_y, grid_x))
                dist, i = cKDTree(x).query(
                    xi, distance_upper_bound=kwargs["distance_upper_bound"])
            except StandardError:
                LOG.debug("Remapping exception: ", exc_info=True)
                LOG.error("Remapping error")
                if self.exit_on_error:
                    self._clear_ll2cr_cache()
                    raise
                continue

            product_filepaths = swath_scene.get_data_filepaths(product_names)
            output_filepaths = self._add_prefix("grid_%s_" % (grid_name, ),
                                                *product_filepaths)

            # Prepare the products
            fill_value = numpy.nan
            for product_name, output_fn in izip(product_names,
                                                output_filepaths):
                LOG.debug(
                    "Running nearest neighbor on '%s' with search distance %f",
                    product_name, kwargs["distance_upper_bound"])
                if os.path.isfile(output_fn):
                    if not self.overwrite_existing:
                        LOG.error(
                            "Intermediate remapping file already exists: %s" %
                            (output_fn, ))
                        raise RuntimeError(
                            "Intermediate remapping file already exists: %s" %
                            (output_fn, ))
                    else:
                        LOG.warning(
                            "Intermediate remapping file already exists, will overwrite: %s",
                            output_fn)

                try:
                    image_array = swath_scene[product_name].get_data_array(
                    ).ravel()
                    values = numpy.append(image_array[good_mask],
                                          image_array.dtype.type(fill_value))
                    output_array = values[i]
                    output_array.tofile(output_fn)

                    # Give the gridded product ownership of the remapped data
                    swath_product = swath_scene[product_name]
                    gridded_product = GriddedProduct()
                    gridded_product.from_swath_product(swath_product)
                    gridded_product["grid_definition"] = grid_def
                    gridded_product["fill_value"] = fill_value
                    gridded_product["grid_data"] = output_fn

                    # Check grid coverage
                    valid_points = numpy.count_nonzero(
                        ~gridded_product.get_data_mask())
                    grid_covered_ratio = valid_points / float(
                        grid_def["width"] * grid_def["height"])
                    grid_covered = grid_covered_ratio > grid_coverage
                    if not grid_covered:
                        msg = "Nearest neighbor resampling only found %f%% of the grid covered (need %f%%) for %s" % (
                            grid_covered_ratio * 100, grid_coverage * 100,
                            product_name)
                        LOG.warning(msg)
                        continue
                    LOG.debug(
                        "Nearest neighbor resampling found %f%% of the grid covered for %s"
                        % (grid_covered_ratio * 100, product_name))

                    gridded_scene[product_name] = gridded_product

                    # hopefully force garbage collection
                    del output_array
                except StandardError:
                    LOG.debug("Remapping exception: ", exc_info=True)
                    LOG.error("Remapping error")
                    self._safe_remove(output_fn)
                    if self.exit_on_error:
                        self._clear_ll2cr_cache()
                        raise
                    continue

                LOG.debug("Done running nearest neighbor on '%s'",
                          product_name)

        # Remove ll2cr files now that we are done with them
        self._clear_ll2cr_cache()

        if not gridded_scene:
            raise RuntimeError(
                "Nearest neighbor resampling could not remap any of the data to grid '%s'"
                % (grid_name, ))

        return gridded_scene

    def _remap_scene_sensor(self, swath_scene, grid_def, **kwargs):
        if not isinstance(swath_scene, Scene):
            raise ValueError("'sensor' resampling only supports SatPy scenes")

        new_scn = None
        for area_obj, ds_list in swath_scene.iter_by_area():
            _new_scn = swath_scene.resample(area_obj, datasets=ds_list)
            if new_scn is None:
                new_scn = _new_scn
            for ds in _new_scn:
                new_scn[ds.info["id"]] = ds

        return new_scn

    def remap_product(self, product, grid_name):
        raise NotImplementedError(
            "Single product remapping is not implemented yet")
示例#6
0
def main(argv=sys.argv[1:]):
    global LOG
    from satpy import Scene
    from satpy.resample import get_area_def
    from satpy.writers import compute_writer_results
    from dask.diagnostics import ProgressBar
    from polar2grid.core.script_utils import (
        setup_logging, rename_log_file, create_exc_handler)
    import argparse
    prog = os.getenv('PROG_NAME', sys.argv[0])
    # "usage: " will be printed at the top of this:
    usage = """
    %(prog)s -h
see available products:
    %(prog)s -r <reader> -w <writer> --list-products -f file1 [file2 ...]
basic processing:
    %(prog)s -r <reader> -w <writer> [options] -f file1 [file2 ...]
basic processing with limited products:
    %(prog)s -r <reader> -w <writer> [options] -p prod1 prod2 -f file1 [file2 ...]
"""
    parser = argparse.ArgumentParser(prog=prog, usage=usage,
                                     description="Load, composite, resample, and save datasets.")
    parser.add_argument('-v', '--verbose', dest='verbosity', action="count", default=0,
                        help='each occurrence increases verbosity 1 level through ERROR-WARNING-INFO-DEBUG (default INFO)')
    parser.add_argument('-l', '--log', dest="log_fn", default=None,
                        help="specify the log filename")
    parser.add_argument('--progress', action='store_true',
                        help="show processing progress bar (not recommended for logged output)")
    parser.add_argument('--num-workers', type=int, default=4,
                        help="specify number of worker threads to use (default: 4)")
    parser.add_argument('--match-resolution', dest='preserve_resolution', action='store_false',
                        help="When using the 'native' resampler for composites, don't save data "
                             "at its native resolution, use the resolution used to create the "
                             "composite.")
    parser.add_argument('-w', '--writers', nargs='+',
                        help='writers to save datasets with')
    parser.add_argument("--list-products", dest="list_products", action="store_true",
                        help="List available reader products and exit")
    subgroups = add_scene_argument_groups(parser)
    subgroups += add_resample_argument_groups(parser)

    argv_without_help = [x for x in argv if x not in ["-h", "--help"]]
    args, remaining_args = parser.parse_known_args(argv_without_help)

    # get the logger if we know the readers and writers that will be used
    if args.reader is not None and args.writers is not None:
        glue_name = args.reader + "_" + "-".join(args.writers or [])
        LOG = logging.getLogger(glue_name)
    # add writer arguments
    if args.writers is not None:
        for writer in (args.writers or []):
            parser_func = WRITER_PARSER_FUNCTIONS.get(writer)
            if parser_func is None:
                continue
            subgroups += parser_func(parser)
    args = parser.parse_args(argv)

    if args.reader is None:
        parser.print_usage()
        parser.exit(1, "\nERROR: Reader must be provided (-r flag).\n"
                       "Supported readers:\n\t{}\n".format('\n\t'.join(['abi_l1b', 'ahi_hsd', 'hrit_ahi'])))
    if args.writers is None:
        parser.print_usage()
        parser.exit(1, "\nERROR: Writer must be provided (-w flag) with one or more writer.\n"
                       "Supported writers:\n\t{}\n".format('\n\t'.join(['geotiff'])))

    def _args_to_dict(group_actions):
        return {ga.dest: getattr(args, ga.dest) for ga in group_actions if hasattr(args, ga.dest)}
    scene_args = _args_to_dict(subgroups[0]._group_actions)
    load_args = _args_to_dict(subgroups[1]._group_actions)
    resample_args = _args_to_dict(subgroups[2]._group_actions)
    writer_args = {}
    for idx, writer in enumerate(args.writers):
        sgrp1, sgrp2 = subgroups[3 + idx * 2: 5 + idx * 2]
        wargs = _args_to_dict(sgrp1._group_actions)
        if sgrp2 is not None:
            wargs.update(_args_to_dict(sgrp2._group_actions))
        writer_args[writer] = wargs
        # get default output filename
        if 'filename' in wargs and wargs['filename'] is None:
            wargs['filename'] = get_default_output_filename(args.reader, writer)

    if not args.filenames:
        parser.print_usage()
        parser.exit(1, "\nERROR: No data files provided (-f flag)\n")

    # Prepare logging
    rename_log = False
    if args.log_fn is None:
        rename_log = True
        args.log_fn = glue_name + "_fail.log"
    levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG]
    setup_logging(console_level=levels[min(3, args.verbosity)], log_filename=args.log_fn)
    logging.getLogger('rasterio').setLevel(levels[min(2, args.verbosity)])
    sys.excepthook = create_exc_handler(LOG.name)
    if levels[min(3, args.verbosity)] > logging.DEBUG:
        import warnings
        warnings.filterwarnings("ignore")
    LOG.debug("Starting script with arguments: %s", " ".join(sys.argv))

    # Set up dask and the number of workers
    if args.num_workers:
        from multiprocessing.pool import ThreadPool
        dask.config.set(pool=ThreadPool(args.num_workers))

    # Parse provided files and search for files if provided directories
    scene_args['filenames'] = get_input_files(scene_args['filenames'])
    # Create a Scene, analyze the provided files
    LOG.info("Sorting and reading input files...")
    try:
        scn = Scene(**scene_args)
    except ValueError as e:
        LOG.error("{} | Enable debug message (-vvv) or see log file for details.".format(str(e)))
        LOG.debug("Further error information: ", exc_info=True)
        return -1
    except OSError:
        LOG.error("Could not open files. Enable debug message (-vvv) or see log file for details.")
        LOG.debug("Further error information: ", exc_info=True)
        return -1

    if args.list_products:
        print("\n".join(sorted(scn.available_dataset_names(composites=True))))
        return 0

    # Rename the log file
    if rename_log:
        rename_log_file(glue_name + scn.attrs['start_time'].strftime("_%Y%m%d_%H%M%S.log"))

    # Load the actual data arrays and metadata (lazy loaded as dask arrays)
    if load_args['products'] is None:
        try:
            reader_mod = importlib.import_module('polar2grid.readers.' + scene_args['reader'])
            load_args['products'] = reader_mod.DEFAULT_PRODUCTS
            LOG.info("Using default product list: {}".format(load_args['products']))
        except (ImportError, AttributeError):
            LOG.error("No default products list set, please specify with `--products`.")
            return -1

    LOG.info("Loading product metadata from files...")
    scn.load(load_args['products'])

    resample_kwargs = resample_args.copy()
    areas_to_resample = resample_kwargs.pop('grids')
    grid_configs = resample_kwargs.pop('grid_configs')
    resampler = resample_kwargs.pop('resampler')

    if areas_to_resample is None and resampler in [None, 'native']:
        # no areas specified
        areas_to_resample = ['MAX']
    elif areas_to_resample is None:
        raise ValueError("Resampling method specified (--method) without any destination grid/area (-g flag).")
    elif not areas_to_resample:
        # they don't want any resampling (they used '-g' with no args)
        areas_to_resample = [None]

    has_custom_grid = any(g not in ['MIN', 'MAX', None] for g in areas_to_resample)
    if has_custom_grid and resampler == 'native':
        LOG.error("Resampling method 'native' can only be used with 'MIN' or 'MAX' grids "
                  "(use 'nearest' method instead).")
        return -1

    p2g_grid_configs = [x for x in grid_configs if x.endswith('.conf')]
    pyresample_area_configs = [x for x in grid_configs if not x.endswith('.conf')]
    if not grid_configs or p2g_grid_configs:
        # if we were given p2g grid configs or we weren't given any to choose from
        from polar2grid.grids import GridManager
        grid_manager = GridManager(*p2g_grid_configs)
    else:
        grid_manager = {}

    if pyresample_area_configs:
        from pyresample.utils import parse_area_file
        custom_areas = parse_area_file(pyresample_area_configs)
        custom_areas = {x.area_id: x for x in custom_areas}
    else:
        custom_areas = {}

    ll_bbox = resample_kwargs.pop('ll_bbox')
    if ll_bbox:
        scn = scn.crop(ll_bbox=ll_bbox)

    wishlist = scn.wishlist.copy()
    preserve_resolution = get_preserve_resolution(args, resampler, areas_to_resample)
    if preserve_resolution:
        preserved_products = set(wishlist) & set(scn.datasets.keys())
        resampled_products = set(wishlist) - preserved_products

        # original native scene
        to_save = write_scene(scn, args.writers, writer_args, preserved_products)
    else:
        preserved_products = set()
        resampled_products = set(wishlist)
        to_save = []

    LOG.debug("Products to preserve resolution for: {}".format(preserved_products))
    LOG.debug("Products to use new resolution for: {}".format(resampled_products))
    for area_name in areas_to_resample:
        if area_name is None:
            # no resampling
            area_def = None
        elif area_name == 'MAX':
            area_def = scn.max_area()
        elif area_name == 'MIN':
            area_def = scn.min_area()
        elif area_name in custom_areas:
            area_def = custom_areas[area_name]
        elif area_name in grid_manager:
            from pyresample.geometry import DynamicAreaDefinition
            p2g_def = grid_manager[area_name]
            area_def = p2g_def.to_satpy_area()
            if isinstance(area_def, DynamicAreaDefinition) and p2g_def['cell_width'] is not None:
                area_def = area_def.freeze(scn.max_area(),
                                           resolution=(abs(p2g_def['cell_width']), abs(p2g_def['cell_height'])))
        else:
            area_def = get_area_def(area_name)

        if resampler is None and area_def is not None:
            rs = 'native' if area_name in ['MIN', 'MAX'] else 'nearest'
            LOG.debug("Setting default resampling to '{}' for grid '{}'".format(rs, area_name))
        else:
            rs = resampler

        if area_def is not None:
            LOG.info("Resampling data to '%s'", area_name)
            new_scn = scn.resample(area_def, resampler=rs, **resample_kwargs)
        elif not preserve_resolution:
            # the user didn't want to resample to any areas
            # the user also requested that we don't preserve resolution
            # which means we have to save this Scene's datasets
            # because they won't be saved
            new_scn = scn

        to_save = write_scene(new_scn, args.writers, writer_args, resampled_products, to_save=to_save)

    if args.progress:
        pbar = ProgressBar()
        pbar.register()

    LOG.info("Computing products and saving data to writers...")
    compute_writer_results(to_save)
    LOG.info("SUCCESS")
    return 0
示例#7
0
class Remapper(object):
    def __init__(self, grid_configs=[],
                 overwrite_existing=False, keep_intermediate=False, exit_on_error=True, **kwargs):
        self.grid_manager = GridManager(*grid_configs)
        self.overwrite_existing = overwrite_existing
        self.keep_intermediate = keep_intermediate
        self.exit_on_error = exit_on_error
        self.methods = {
            "ewa": self._remap_scene_ewa,
            "nearest": self._remap_scene_nearest,
            "sensor": self._remap_scene_sensor,
        }
        self.ll2cr_cache = {}

    def highest_resolution_swath_definition(self, swath_scene_or_product):
        if isinstance(swath_scene_or_product, SwathScene):
            swath_defs = [product_def["swath_definition"] for product_def in swath_scene_or_product.values()]
            # choose the highest resolution swath definition navigation (the one with the most columns)
            swath_def = max(swath_defs, key=lambda d: d["swath_columns"])
        else:
            # given a single product
            swath_def = swath_scene_or_product["swath_definition"]
        return swath_def

    def remap_scene(self, swath_scene, grid_name, **kwargs):
        method = kwargs.pop("remap_method", "ewa")
        LOG.debug("Remap scene being run with method '%s'", method)
        if method not in self.methods:
            LOG.error("Unknown remapping method '%s'", method)
            raise ValueError("Unknown remapping method '%s'" % (method,))

        if method == "sensor":
            if grid_name != "sensor":
                raise ValueError("'sensor' resampling only supports the 'sensor' grid")
            else:
                # grid def isn't used by 'sensor' resampling
                grid_def = None
        else:
            grid_def = self.grid_manager.get_grid_definition(grid_name)
        func = self.methods[method]

        # FUTURE: Make this a keyword and add the logic to support it
        if kwargs.get("share_dynamic_grids", True) and method != "sensor":
            # Let's run ll2cr to fill in any parameters we need to and decide if the data fits in the grid
            best_swath_def = self.highest_resolution_swath_definition(swath_scene)
            LOG.debug("Running ll2cr on the highest resolution swath to determine if it fits")
            try:
                self.run_ll2cr(best_swath_def, grid_def, swath_usage=kwargs.get("swath_usage", SWATH_USAGE))
                grid_str = str(grid_def).replace("\n", "\n\t")
                LOG.info("Grid information:\n\t%s", grid_str)
            except StandardError:
                LOG.error("Remapping error")
                raise

        return func(swath_scene, grid_def, **kwargs)

    def run_ll2cr(self, swath_definition, grid_definition, swath_usage=SWATH_USAGE):
        geo_id = swath_definition["swath_name"]
        grid_name = grid_definition["grid_name"]
        if (geo_id, grid_name) in self.ll2cr_cache:
            return self.ll2cr_cache[(geo_id, grid_name)]
        LOG.debug("Swath '%s' -> Grid '%s'", geo_id, grid_name)

        rows_fn = "ll2cr_rows_%s_%s.dat" % (grid_name, geo_id)
        cols_fn = "ll2cr_cols_%s_%s.dat" % (grid_name, geo_id)
        # lon_arr = swath_definition.get_longitude_array()
        # lat_arr = swath_definition.get_latitude_array()

        if os.path.isfile(rows_fn):
            if not self.overwrite_existing:
                LOG.error("Intermediate remapping file already exists: %s" % (rows_fn,))
                raise RuntimeError("Intermediate remapping file already exists: %s" % (rows_fn,))
            else:
                LOG.warning("Intermediate remapping file already exists, will overwrite: %s", rows_fn)
        if os.path.isfile(cols_fn):
            if not self.overwrite_existing:
                LOG.error("Intermediate remapping file already exists: %s" % (cols_fn,))
                raise RuntimeError("Intermediate remapping file already exists: %s" % (cols_fn,))
            else:
                LOG.warning("Intermediate remapping file already exists, will overwrite: %s", cols_fn)
        try:
            rows_arr = swath_definition.copy_latitude_array(filename=rows_fn, read_only=False)
            cols_arr = swath_definition.copy_longitude_array(filename=cols_fn, read_only=False)
            points_in_grid, _, _ = ll2cr.ll2cr(cols_arr, rows_arr, grid_definition,
                                               fill_in=swath_definition["fill_value"])
            grid_str = str(grid_definition).replace("\n", "\n\t")
            LOG.debug("Grid information:\n\t%s", grid_str)
        except StandardError:
            LOG.error("Unexpected error encountered during ll2cr gridding for %s -> %s", geo_id, grid_name)
            LOG.debug("ll2cr error exception: ", exc_info=True)
            self._safe_remove(rows_fn, cols_fn)
            raise

        # if 5% of the grid will have data in it then it fits
        fraction_in = points_in_grid / float(rows_arr.size)
        swath_used = fraction_in > swath_usage
        if not swath_used:
            self._safe_remove(rows_fn, cols_fn)
            LOG.error("Data does not fit in grid %s because it only %f%% of the swath is used" % (grid_name, fraction_in * 100))
            raise RuntimeError("Data does not fit in grid %s" % (grid_name,))
        else:
            LOG.debug("Data fits in grid %s and uses %f%% of the swath", grid_name, fraction_in * 100)

        self.ll2cr_cache[(geo_id, grid_name)] = (cols_fn, rows_fn)
        return cols_fn, rows_fn

    def _add_prefix(self, prefix, *filepaths):
        return [os.path.join(os.path.dirname(x), prefix + os.path.basename(x)) for x in filepaths]

    def _safe_remove(self, *filepaths):
        if not self.keep_intermediate:
            for fp in filepaths:
                if os.path.isfile(fp):
                    try:
                        LOG.debug("Removing intermediate file '%s'...", fp)
                        os.remove(fp)
                    except OSError:
                        LOG.warning("Could not remove intermediate files that aren't needed anymore.")
                        LOG.debug("Intermediate output file remove exception:", exc_info=True)

    def _clear_ll2cr_cache(self):
        # Remove ll2cr files now that we are done with them
        for cols_fn, rows_fn in self.ll2cr_cache.values():
            self._safe_remove(rows_fn, cols_fn)
        self.ll2cr_cache = {}

    def _remap_scene_ewa(self, swath_scene, grid_def, share_dynamic_grids=True, **kwargs):
        # TODO: Make methods more flexible than just a function call
        gridded_scene = GriddedScene()
        grid_name = grid_def["grid_name"]

        # Group products together that shared the same geolocation
        product_groups = defaultdict(list)
        for product_name, swath_product in swath_scene.items():
            swath_def = swath_product["swath_definition"]
            is_cat = swath_product.get('flag_meanings') is not None
            geo_id = swath_def["swath_name"]
            product_groups[(is_cat, geo_id)].append(product_name)

        # keep a copy of the original grid definition
        # if a shared grid definition isn't used then
        # we start from the original
        orig_grid_def = grid_def
        for (is_cat, geo_id), product_names in product_groups.items():
            try:
                LOG.debug("Running ll2cr on the geolocation data for the following products:\n\t%s", "\n\t".join(sorted(product_names)))
                swath_def = swath_scene[product_names[0]]["swath_definition"]
                if not share_dynamic_grids:
                    grid_def = orig_grid_def.copy()
                cols_fn, rows_fn = self.run_ll2cr(swath_def, grid_def,
                                                  swath_usage=kwargs.get("swath_usage", SWATH_USAGE))
            except StandardError:
                LOG.error("Remapping error")
                if self.exit_on_error:
                    raise
                continue

            # Run fornav for all of the products at once
            LOG.debug("Running fornav for the following products:\n\t%s", "\n\t".join(sorted(product_names)))
            # XXX: May have to do something smarter if there are float products and integer products together (is_category property on SwathProduct?)
            product_filepaths = list(swath_scene.get_data_filepaths(product_names))
            fornav_filepaths = self._add_prefix("grid_%s_" % (grid_name,), *product_filepaths)
            for fp in fornav_filepaths:
                if os.path.isfile(fp):
                    if not self.overwrite_existing:
                        LOG.error("Intermediate remapping file already exists: %s" % (fp,))
                        raise RuntimeError("Intermediate remapping file already exists: %s" % (fp,))
                    else:
                        LOG.warning("Intermediate remapping file already exists, will overwrite: %s", fp)

            rows_per_scan = swath_def.get("rows_per_scan", 0)
            if rows_per_scan < 2:
                LOG.warning("Data has less than 2 rows per scan, this is not optimal for the EWA resampling algorithm. All rows will be used as one scan")
                rows_per_scan = swath_def['swath_rows']
            edge_res = swath_def.get("limb_resolution", None)
            fornav_D = kwargs.get("fornav_D", None)
            if fornav_D is None:
                if edge_res is not None:
                    if grid_def.is_latlong:
                        fornav_D = (edge_res / 2) / grid_def.cell_width_meters
                    else:
                        fornav_D = (edge_res / 2) / grid_def["cell_width"]
                    LOG.debug("Fornav 'D' option dynamically set to %f", fornav_D)
                else:
                    fornav_D = 10.0

            mwm = kwargs.get('maximum_weight_mode', False)
            if is_cat and not mwm:
                LOG.debug("Turning on maximum weight mode in EWA resampling for category products")
                mwm = True

            try:
                # fornav.ms2gt_fornav(
                #     len(product_filepaths),
                #     swath_def["swath_columns"],
                #     swath_def["swath_rows"]/rows_per_scan,
                #     rows_per_scan,
                #     cols_fn,
                #     rows_fn,
                #     product_filepaths,
                #     grid_def["width"],
                #     grid_def["height"],
                #     fornav_filepaths,
                #     swath_data_type_1="f4",
                #     swath_fill_1=swath_scene.get_fill_value(product_names),
                #     grid_fill_1=numpy.nan,
                #     weight_delta_max=fornav_D,
                #     weight_distance_max=kwargs.get("fornav_d", None),
                #     maximum_weight_mode=kwargs.get("maximum_weight_mode", None),
                #     start_scan=(0, 0),
                # )
                cols_array = numpy.memmap(cols_fn, dtype=numpy.float32, mode='r', shape=(swath_def["swath_rows"], swath_def["swath_columns"]))
                rows_array = numpy.memmap(rows_fn, dtype=numpy.float32, mode='r', shape=(swath_def["swath_rows"], swath_def["swath_columns"]))
                # Assumed that all share the same fill value and data type
                input_dtype = [swath_scene[pn]["data_type"] for pn in product_names]
                input_fill = [swath_scene[pn]["fill_value"] for pn in product_names]
                LOG.debug("Running fornav with D={} and d={}".format(fornav_D, kwargs.get('fornav_d', 1.0)))
                valid_list = fornav.fornav(cols_array,
                                           rows_array,
                                           rows_per_scan,
                                           product_filepaths,
                                           input_dtype=input_dtype,
                                           input_fill=input_fill,
                                           output_arrays=fornav_filepaths,
                                           grid_cols=grid_def["width"],
                                           grid_rows=grid_def["height"],
                                           weight_delta_max=fornav_D,
                                           weight_distance_max=kwargs.get("fornav_d", 1.0),
                                           maximum_weight_mode=mwm,
                                           use_group_size=True
                                           )
            except StandardError:
                LOG.debug("Remapping exception: ", exc_info=True)
                LOG.error("Remapping error")
                self._safe_remove(*fornav_filepaths)
                if self.exit_on_error:
                    self._clear_ll2cr_cache()
                    raise
                continue

            # Give the gridded product ownership of the remapped data
            for product_name, fornav_fp, valid_points in zip(product_names, fornav_filepaths, valid_list):
                swath_product = swath_scene[product_name]
                gridded_product = GriddedProduct()
                gridded_product.from_swath_product(swath_product)
                gridded_product["grid_definition"] = grid_def
                gridded_product["fill_value"] = numpy.nan
                gridded_product["grid_data"] = fornav_fp

                grid_coverage = kwargs.get("grid_coverage", GRID_COVERAGE)
                grid_covered_ratio = valid_points / float(grid_def["width"] * grid_def["height"])
                grid_covered = grid_covered_ratio > grid_coverage
                if not grid_covered:
                    msg = "EWA resampling only found %f%% of the grid covered (need %f%%) for %s" % (grid_covered_ratio * 100, grid_coverage * 100, product_name)
                    LOG.warning(msg)
                    continue
                LOG.debug("EWA resampling found %f%% of the grid covered for %s" % (grid_covered_ratio * 100, product_name))
                gridded_scene[product_name] = gridded_product

        self._clear_ll2cr_cache()

        if not gridded_scene:
            self._safe_remove(*fornav_filepaths)
            raise RuntimeError("EWA resampling could not remap any of the data to grid '%s'" % (grid_name,))

        return gridded_scene

    def _remap_scene_nearest(self, swath_scene, grid_def, share_dynamic_grids=True, share_remap_mask=True, **kwargs):
        # TODO: Make methods more flexible than just a function call
        gridded_scene = GriddedScene()
        grid_name = grid_def["grid_name"]

        # Group products together that shared the same geolocation
        product_groups = defaultdict(list)
        for product_name, swath_product in swath_scene.items():
            swath_def = swath_product["swath_definition"]
            geo_id = swath_def["swath_name"]
            product_groups[geo_id].append(product_name)

        grid_coverage = kwargs.get("grid_coverage", GRID_COVERAGE)
        orig_grid_def = grid_def
        for geo_id, product_names in product_groups.items():
            pp_names = "\n\t".join(product_names)
            LOG.debug("Running ll2cr on the geolocation data for the following products:\n\t%s", pp_names)
            LOG.debug("Swath name: %s", geo_id)

            # TODO: Move into it's own function if this gets complicated
            # TODO: Add some multiprocessing
            try:
                swath_def = swath_scene[product_names[0]]["swath_definition"]
                if not share_dynamic_grids:
                    grid_def = orig_grid_def.copy()
                cols_fn, rows_fn = self.run_ll2cr(swath_def, grid_def)
            except StandardError:
                LOG.error("Remapping error")
                if self.exit_on_error:
                    raise
                continue

            LOG.debug("Running nearest neighbor for the following products:\n\t%s", "\n\t".join(product_names))
            edge_res = swath_def.get("limb_resolution", None)
            if kwargs.get("distance_upper_bound", None) is None:
                if edge_res is not None:
                    if grid_def.is_latlong:
                        distance_upper_bound = (edge_res / 2) / grid_def.cell_width_meters
                    else:
                        distance_upper_bound = (edge_res / 2) / grid_def["cell_width"]
                    LOG.debug("Distance upper bound dynamically set to %f", distance_upper_bound)
                else:
                    distance_upper_bound = 3.0
                kwargs["distance_upper_bound"] = distance_upper_bound

            try:
                grid_x, grid_y = numpy.mgrid[:grid_def["height"], :grid_def["width"]]
                # we need flattened versions of these
                shape = (swath_def["swath_rows"] * swath_def["swath_columns"],)
                cols_array = numpy.memmap(cols_fn, shape=shape, dtype=swath_def["data_type"])
                rows_array = numpy.memmap(rows_fn, shape=shape, dtype=swath_def["data_type"])
                good_mask = ~mask_helper(cols_array, swath_def["fill_value"])
                if share_remap_mask:
                    for product_name in product_names:
                        LOG.debug("Combining data masks before building KDTree for nearest neighbor: %s", product_name)
                        good_mask &= ~swath_scene[product_name].get_data_mask().ravel()
                x = _ndim_coords_from_arrays((cols_array[good_mask], rows_array[good_mask]))
                xi = _ndim_coords_from_arrays((grid_y, grid_x))
                dist, i = cKDTree(x).query(xi, distance_upper_bound=kwargs["distance_upper_bound"])
            except StandardError:
                LOG.debug("Remapping exception: ", exc_info=True)
                LOG.error("Remapping error")
                if self.exit_on_error:
                    self._clear_ll2cr_cache()
                    raise
                continue

            product_filepaths = swath_scene.get_data_filepaths(product_names)
            output_filepaths = self._add_prefix("grid_%s_" % (grid_name,), *product_filepaths)

            # Prepare the products
            fill_value = numpy.nan
            for product_name, output_fn in izip(product_names, output_filepaths):
                LOG.debug("Running nearest neighbor on '%s' with search distance %f", product_name, kwargs["distance_upper_bound"])
                if os.path.isfile(output_fn):
                    if not self.overwrite_existing:
                        LOG.error("Intermediate remapping file already exists: %s" % (output_fn,))
                        raise RuntimeError("Intermediate remapping file already exists: %s" % (output_fn,))
                    else:
                        LOG.warning("Intermediate remapping file already exists, will overwrite: %s", output_fn)

                try:
                    image_array = swath_scene[product_name].get_data_array().ravel()
                    values = numpy.append(image_array[good_mask], image_array.dtype.type(fill_value))
                    output_array = values[i]
                    output_array.tofile(output_fn)

                    # Give the gridded product ownership of the remapped data
                    swath_product = swath_scene[product_name]
                    gridded_product = GriddedProduct()
                    gridded_product.from_swath_product(swath_product)
                    gridded_product["grid_definition"] = grid_def
                    gridded_product["fill_value"] = fill_value
                    gridded_product["grid_data"] = output_fn

                    # Check grid coverage
                    valid_points = numpy.count_nonzero(~gridded_product.get_data_mask())
                    grid_covered_ratio = valid_points / float(grid_def["width"] * grid_def["height"])
                    grid_covered = grid_covered_ratio > grid_coverage
                    if not grid_covered:
                        msg = "Nearest neighbor resampling only found %f%% of the grid covered (need %f%%) for %s" % (grid_covered_ratio * 100, grid_coverage * 100, product_name)
                        LOG.warning(msg)
                        continue
                    LOG.debug("Nearest neighbor resampling found %f%% of the grid covered for %s" % (grid_covered_ratio * 100, product_name))

                    gridded_scene[product_name] = gridded_product

                    # hopefully force garbage collection
                    del output_array
                except StandardError:
                    LOG.debug("Remapping exception: ", exc_info=True)
                    LOG.error("Remapping error")
                    self._safe_remove(output_fn)
                    if self.exit_on_error:
                        self._clear_ll2cr_cache()
                        raise
                    continue

                LOG.debug("Done running nearest neighbor on '%s'", product_name)

        # Remove ll2cr files now that we are done with them
        self._clear_ll2cr_cache()

        if not gridded_scene:
            raise RuntimeError("Nearest neighbor resampling could not remap any of the data to grid '%s'" % (grid_name,))

        return gridded_scene

    def _remap_scene_sensor(self, swath_scene, grid_def, **kwargs):
        if not isinstance(swath_scene, Scene):
            raise ValueError("'sensor' resampling only supports SatPy scenes")

        new_scn = None
        for area_obj, ds_list in swath_scene.iter_by_area():
            _new_scn = swath_scene.resample(area_obj, datasets=ds_list)
            if new_scn is None:
                new_scn = _new_scn
            for ds in _new_scn:
                new_scn[ds.info["id"]] = ds

        return new_scn

    def remap_product(self, product, grid_name):
        raise NotImplementedError("Single product remapping is not implemented yet")
示例#8
0
 def test_init_basic1(self):
     gm = GridManager()
示例#9
0
def test_grid_manager_basic(builtin_test_grids_conf):
    """Test basic parsing of .conf files."""
    GridManager(*builtin_test_grids_conf)