示例#1
0
    def fun2_xy(xx, ct, bt, ax, ay, a, dist):
        x_n, y_n, a_k = xx[:NN], xx[NN:2 * NN], xx[2 * NN:]

        a[mask] = xx[2 * NN:]

        ax = poly_utils.polyder2d(a, ax, 0)
        ay = poly_utils.polyder2d(a, ay, 1)

        # cost:
        # (features[k] = n, xi, yi, m, xj, yj)
        # x_m - x_n + x_i - x_j + ux(x_i, y_i) - ux(x_j, y_j) = 0
        # y_m - y_n + y_i - y_j + uy(x_i, y_i) - uy(x_j, y_j) = 0

        temp1 = x_n[pos_inv[fes[:, 3].astype(np.int)]] - x_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 1] - fes[:, 4] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ax) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ax)

        temp2 = y_n[pos_inv[fes[:, 3].astype(np.int)]] - y_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 2] - fes[:, 5] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ay) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ay)

        cost = np.sum((temp1**2 + temp2**2) * reg)

        # integrate:
        ct = poly_utils.polymul2d(a, a, ct)
        cost += str_sm * poly_utils.polyint2d(ct, bt, -1., 1., -1., 1.)
        return cost
示例#2
0
    def err_poly(xx, ct, bt, ax, ay, a):
        x_n, y_n, a_k = xx[:NN], xx[NN:2 * NN], xx[2 * NN:]

        a[mask] = xx[2 * NN:]

        ax = poly_utils.polyder2d(a, ax, 0)
        ay = poly_utils.polyder2d(a, ay, 1)

        ct = poly_utils.polymul2d(a, a, ct)
        cost = str_sm * poly_utils.polyint2d(ct, bt, -1., 1., -1., 1.)
        return cost
示例#3
0
    def err_xy(xx, ct, bt, ax, ay, a):
        x_n, y_n, a_k = xx[:NN], xx[NN:2 * NN], xx[2 * NN:]

        a[mask] = xx[2 * NN:]

        ax = poly_utils.polyder2d(a, ax, 0)
        ay = poly_utils.polyder2d(a, ay, 1)

        # cost:
        # (features[k] = n, xi, yi, m, xj, yj)
        # x_m - x_n + x_i - x_j + ux(x_i, y_i) - ux(x_j, y_j) = 0
        # y_m - y_n + y_i - y_j + uy(x_i, y_i) - uy(x_j, y_j) = 0

        temp1 = x_n[pos_inv[fes[:, 3].astype(np.int)]] - x_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 1] - fes[:, 4] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ax) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ax)

        temp2 = y_n[pos_inv[fes[:, 3].astype(np.int)]] - y_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 2] - fes[:, 5] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ay) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ay)

        return temp1**2 + temp2**2
示例#4
0
def calculate_positions_distortions(pos, fes, roi, K):
    import scipy.optimize
    import pyximport
    pyximport.install()
    import poly_utils
    from numpy.polynomial.polynomial import polyval2d

    str_sm = 1.0

    N = np.max(pos[:, 0])
    NN = len(pos)

    # here we use [ss, fs] --> [x, y] ordering
    xmin, xmax = (1 - roi[1] + roi[0]) // 2, (1 + roi[1] - roi[0]) // 2
    ymin, ymax = (1 - roi[3] + roi[2]) // 2, (1 + roi[3] - roi[2]) // 2

    # we need the pos --> index mapping
    pos_inv = np.zeros(int(pos[:, 0].max() + 1), dtype=np.uint16)
    for i, p in enumerate(pos[:, 0]):
        pos_inv[int(p)] = i

    a = np.zeros((K, K), dtype=np.float)
    ax = np.zeros((K, K), dtype=np.float)
    ay = np.zeros((K, K), dtype=np.float)

    mask = np.ones_like(a).astype(np.bool)
    mask[0, 0] = False  # no phase offset
    mask[1, 0] = False  # no x-shift
    mask[0, 1] = False  # no y-shift
    mask[2, 0] = False  # no x-scale
    mask[0, 2] = False  # no y-scale

    ct = np.zeros((2 * K - 1, 2 * K - 1), dtype=np.float)
    bt = np.zeros((2 * K - 1, ), dtype=np.float)

    # regularise by distance from the centre
    dist = ((fes[:, 1]+xmin)/float(xmax))**2 + ((fes[:, 4]+xmin)/float(xmax))**2 \
          +((fes[:, 2]+ymin)/float(ymax))**2 + ((fes[:, 5]+ymin)/float(ymax))**2
    reg = np.exp(-dist**2 / (8. * 1.0**2))

    def fun2_xy(xx, ct, bt, ax, ay, a, dist):
        x_n, y_n, a_k = xx[:NN], xx[NN:2 * NN], xx[2 * NN:]

        a[mask] = xx[2 * NN:]

        ax = poly_utils.polyder2d(a, ax, 0)
        ay = poly_utils.polyder2d(a, ay, 1)

        # cost:
        # (features[k] = n, xi, yi, m, xj, yj)
        # x_m - x_n + x_i - x_j + ux(x_i, y_i) - ux(x_j, y_j) = 0
        # y_m - y_n + y_i - y_j + uy(x_i, y_i) - uy(x_j, y_j) = 0

        temp1 = x_n[pos_inv[fes[:, 3].astype(np.int)]] - x_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 1] - fes[:, 4] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ax) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ax)

        temp2 = y_n[pos_inv[fes[:, 3].astype(np.int)]] - y_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 2] - fes[:, 5] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ay) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ay)

        cost = np.sum((temp1**2 + temp2**2) * reg)

        # integrate:
        ct = poly_utils.polymul2d(a, a, ct)
        cost += str_sm * poly_utils.polyint2d(ct, bt, -1., 1., -1., 1.)
        return cost

    def err_poly(xx, ct, bt, ax, ay, a):
        x_n, y_n, a_k = xx[:NN], xx[NN:2 * NN], xx[2 * NN:]

        a[mask] = xx[2 * NN:]

        ax = poly_utils.polyder2d(a, ax, 0)
        ay = poly_utils.polyder2d(a, ay, 1)

        ct = poly_utils.polymul2d(a, a, ct)
        cost = str_sm * poly_utils.polyint2d(ct, bt, -1., 1., -1., 1.)
        return cost

    def err_xy(xx, ct, bt, ax, ay, a):
        x_n, y_n, a_k = xx[:NN], xx[NN:2 * NN], xx[2 * NN:]

        a[mask] = xx[2 * NN:]

        ax = poly_utils.polyder2d(a, ax, 0)
        ay = poly_utils.polyder2d(a, ay, 1)

        # cost:
        # (features[k] = n, xi, yi, m, xj, yj)
        # x_m - x_n + x_i - x_j + ux(x_i, y_i) - ux(x_j, y_j) = 0
        # y_m - y_n + y_i - y_j + uy(x_i, y_i) - uy(x_j, y_j) = 0

        temp1 = x_n[pos_inv[fes[:, 3].astype(np.int)]] - x_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 1] - fes[:, 4] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ax) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ax)

        temp2 = y_n[pos_inv[fes[:, 3].astype(np.int)]] - y_n[pos_inv[fes[:, 0].astype(np.int)]]  \
             + fes[:, 2] - fes[:, 5] \
             + polyval2d((fes[:, 1]+xmin)/float(xmax), (fes[:, 2]+ymin)/float(ymax), ay) \
             - polyval2d((fes[:, 4]+xmin)/float(xmax), (fes[:, 5]+ymin)/float(ymax), ay)

        return temp1**2 + temp2**2

    import time
    x0 = np.concatenate(
        (pos[:, 1], pos[:, 2], np.zeros(K**2 - 5, dtype=np.float)))

    d0 = time.time()
    res = scipy.optimize.minimize(fun2_xy,
                                  x0,
                                  args=(ct, bt, ax, ay, a, dist),
                                  options={'disp': True})
    d1 = time.time()
    print('time to optimise:', d1 - d0, 's')

    # print the features with the highest error:
    err = err_xy(res.x, ct, bt, ax, ay, a)
    err_poly = err_poly(res.x, ct, bt, ax, ay, a)
    print('features, highest error --> lowest error:')
    print('total position error:', np.sum(err))
    print('total polyint  error:', err_poly)
    i = np.argsort(err)[::-1]
    for ii in i:
        print(fes[ii], np.sqrt(err[ii] / 2.))

    xx = res.x
    x_n, y_n = xx[:NN], xx[NN:2 * NN]

    a[mask] = xx[2 * NN:]
    ax = poly_utils.polyder2d(a, ax, 0)
    ay = poly_utils.polyder2d(a, ay, 1)

    print(res)
    print('\nss poly coeffs:')
    print(ax)

    print('\nfs poly coeffs:')
    print(ay)

    pos_out = pos.copy()
    pos_out[:, 1] = x_n
    pos_out[:, 2] = y_n

    i, j = np.ogrid[-1:1:(xmax - xmin) * 1j, -1:1:(ymax - ymin) * 1j]
    uss = polyval2d(i, j, ax)
    ufs = polyval2d(i, j, ay)

    # generate the new feature positions
    # I_m(xj) = I_n(xi)
    # O(xj - x_m + u(xj)) = O(xi - x_n + u(xi))
    # xj + ux(x_j, y_j) = x_m - x_n + x_i + ux(x_i, y_i)
    # so we need the inverse of x - ux and y - uy
    #fes_out = np.empty_like(fes)
    #for k, fe in enumerate(fes):
    #    xi, yi = fe[1:3]
    #    xj, yj = fe[4:6]
    #    uss_t  = i - uss
    #    ufs_t  = j - ufs

    #    ind = np.argmin(np.abs(uss_t - x

    return uss, ufs, pos_out