示例#1
0
def run_experiment(data_path, glove_path):
    # try:
    log_level = get_log_level()
    if not log_level:
        log_level = logging.INFO

    logger.info("Starting experiment")

    experiment = Experiment()
    logging.basicConfig(level=log_level)

    logging.info("Loading data")
    dpl = Datapipeline(data_path=data_path)
    dpl.transform()
    train, val = dpl.split_data()
    logging.info("Data loaded")
    model = twitter_model(glove_path=glove_path)
    model.build_model(train.values)
    model.get_train_data(train.values)
    output_model = model.train()

    filepath = os.path.join(get_outputs_path(), "trump_bot.h5")

    # metrics = model.train(params)
    #
    # experiment.log_metrics(**metrics)
    # save model
    output_model.save(filepath)

    logger.info("Experiment completed")
示例#2
0
def run_experiment(params):
    try:
        log_level = get_log_level()
        if not log_level:
            log_level = logging.INFO

        logger.info("Starting experiment")

        experiment = Experiment()
        logging.basicConfig(level=log_level)
        
        metrics = model.train(params)
        
        experiment.log_metrics(**metrics)

        logger.info("Experiment completed")
    except Exception as e:
        logger.error(f"Experiment failed: {str(e)}")
示例#3
0
def run_experiment(data_path, model_name, params):
    try:
        log_level = get_log_level()
        if not log_level:
            log_level = logging.INFO

        logger.info("Starting experiment")

        experiment = Experiment()
        logging.basicConfig(level=log_level)

        # initiate model class
        model = Model(model_name)
        logger.info(f'{model_name} ok')

        # get data
        refs = model.get_data(data_path, **params)
        logger.info('data ok')

        # train model
        model.model.train()
        logger.info('model trained')

        # get pred
        preds = refs.apply(lambda x: model.model.predict(x))
        logger.info('preds ok')

        # eval
        precision, recall, f1 = model.model.eval(preds, refs)
        logger.info('eval ok')

        print(f'Precision: {precision}')
        print(f'Recall: {recall}')
        print(f'F1: {f1}')

        experiment.log_metrics(precision=precision)
        experiment.log_metrics(recall=recall)
        experiment.log_metrics(f1=f1)

        logger.info("Experiment completed")
    except Exception as e:
        logger.error(f"Experiment failed: {str(e)}")
示例#4
0
def setup_logging():
    log_level = get_log_level()
    if log_level is None:
        log_level = logging.INFO
    logging.basicConfig(level=log_level)
示例#5
0
def main():
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for training (default: 1000)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=15, metavar='N',
                        help='number of epochs to train (default: 9)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=42, metavar='S',
                        help='random seed (default: 42)')
    args = parser.parse_args()

    experiment = Experiment()
    logger = logging.getLogger('main')
    logger.setLevel(get_log_level())

    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    logger.info('%s', device)

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('.', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('.', train=False, transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)
    model_path = os.path.join(get_outputs_path(), 'model.p')
    state_path = os.path.join(get_outputs_path(), 'state.json')

    start = 1

    if os.path.isfile(model_path):
        model.load_state_dict(torch.load(model_path))
        logger.info('%s', 'Model Loaded')
    if os.path.isfile(state_path):
        with open(state_path, 'r') as f:
            data = json.load(f)
            start = data['epoch']
        logger.info('%s', 'State Loaded')

    optimizer = optim.SGD(model.parameters(), lr=args.lr)

    with SummaryWriter(log_dir=get_outputs_path()) as writer:
        for epoch in range(start, args.epochs + 1):
            train(epoch, writer, experiment, args, model, device, train_loader, optimizer)
            test(epoch, writer, experiment, args, model, device, test_loader)
            torch.save(model.state_dict(), model_path)
            with open(state_path, 'w') as f:
                data = {
                    'epoch' : epoch
                }
                json.dump(data, f)
示例#6
0

def set_logging(log_level=None):
    if log_level == 'INFO':
        log_level = tf.logging.INFO
    elif log_level == 'DEBUG':
        log_level = tf.logging.DEBUG
    elif log_level == 'WARN':
        log_level = tf.logging.WARN
    else:
        log_level = 'INFO'

    tf.logging.set_verbosity(log_level)


set_logging(get_log_level())

experiment = Experiment()

vm_paths = list(get_data_paths().values())[0]

data_paths = "{}/SSD/tfrecords".format(vm_paths)

checkpointpath = "{}/SSD.checkpoints/ssd_300_vgg.ckpt".format(vm_paths)
TRAIN_DIR = get_outputs_path()

slim = tf.contrib.slim

DATA_FORMAT = 'NHWC'

# =========================================================================== #