示例#1
0
    def __call__(self, args):
        run_results = misc.pickle_load(args.results)

        def meta_from_iter_result(iter_result):
            meta = TensorMetadata()
            for name, arr in iter_result.items():
                meta.add(name, dtype=arr.dtype, shape=arr.shape)
            return meta

        results_str = ""
        results_str += "==== Run Results ({:} runners) ====\n\n".format(
            len(run_results))

        for runner_name, iters in run_results.items():
            results_str += "---- Runner: {:} ({:} iterations) ----\n".format(
                runner_name, len(iters))

            for index, iter_result in enumerate(iters):
                if args.show_values:
                    for name, arr in iter_result.items():
                        results_str += "{:} [dtype={:}, shape={:}]\n{:}\n\n".format(
                            name, arr.dtype, arr.shape,
                            misc.indent_block(str(arr)))
                else:
                    iter_meta = meta_from_iter_result(iter_result)
                    if len(iters) > 1 and args.all:
                        results_str += misc.indent_block(
                            "Iteration: {:} | ".format(index))
                    results_str += "{:}\n".format(iter_meta)

                if not args.all:
                    break
            results_str += "\n"
        results_str = misc.indent_block(results_str, level=0)
        G_LOGGER.info(results_str)
示例#2
0
 def display_inputs():
     inputs_str = ""
     inputs_str += "==== Input Data ({:} iterations) ====\n\n".format(
         len(data))
     inputs_str += str_from_iters(data) + "\n"
     inputs_str = misc.indent_block(inputs_str, level=0).strip()
     G_LOGGER.info(inputs_str)
示例#3
0
        def str_from_iters(iters):
            out_str = ""
            for index, iter_result in enumerate(iters):
                if args.show_values:
                    for name, arr in iter_result.items():
                        out_str += "{:} [dtype={:}, shape={:}]\n{:}\n\n".format(
                            name, arr.dtype, arr.shape,
                            misc.indent_block(str(arr)))
                else:
                    iter_meta = meta_from_iter_result(iter_result)
                    if len(iters) > 1 and args.all:
                        out_str += misc.indent_block(
                            "Iteration: {:} | ".format(index))
                    out_str += "{:}\n".format(iter_meta)

                if not args.all:
                    break
            return out_str
示例#4
0
        def display_results():
            results_str = ""
            results_str += "==== Run Results ({:} runners) ====\n\n".format(
                len(data))

            for runner_name, iters in data.items():
                results_str += "---- Runner: {:} ({:} iterations) ----\n".format(
                    runner_name, len(iters))
                results_str += str_from_iters(iters) + "\n"

            results_str = misc.indent_block(results_str, level=0).strip()
            G_LOGGER.info(results_str)
示例#5
0
def str_from_engine(engine):
    bindings_per_profile = get_bindings_per_profile(engine)
    engine_str = "Name: {:} | {:}{:} Batch Engine ({:} layers)\n".format(engine.name,
                        "Refittable " if engine.refittable else "",
                        "Implicit" if hasattr(engine, "has_implicit_batch_dimension") and engine.has_implicit_batch_dimension else "Explicit",
                        engine.num_layers)
    engine_str += "\n"

    # Show metadata for the first profile (i.e. the dynamic shapes)
    input_metadata = get_input_metadata_from_engine(engine, 0, bindings_per_profile)
    engine_str += "---- {:} Engine Inputs ----\n{:}\n\n".format(len(input_metadata), input_metadata)
    output_metadata = get_output_metadata_from_engine(engine, 0, bindings_per_profile)
    engine_str += "---- {:} Engine Outputs ----\n{:}\n\n".format(len(output_metadata), output_metadata)

    engine_str += "---- Memory ----\nDevice Memory: {:} bytes\n\n".format(engine.device_memory_size)

    engine_str += "---- {:} Profiles ({:} Bindings Each) ----\n".format(engine.num_optimization_profiles, bindings_per_profile)
    for profile_index in range(engine.num_optimization_profiles):
        engine_str += "- Profile: {:}\n".format(profile_index)

        max_width = max([len(binding) for binding in engine]) + 8
        for offset in range(bindings_per_profile):
            binding = profile_index * bindings_per_profile + offset
            name =  "[Name: {:}]".format(engine.get_binding_name(binding))
            engine_str += misc.indent_block("Binding Index: {:} {:} {:<{max_width}}".format(
                                binding, "(Input) " if engine.binding_is_input(binding) else "(Output)", name, max_width=max_width))

            if engine.binding_is_input(binding):
                if engine.is_shape_binding(binding):
                    min_shape, opt_shape, max_shape = engine.get_profile_shape_input(profile_index, binding)
                else:
                    min_shape, opt_shape, max_shape = engine.get_profile_shape(profile_index, binding)
                engine_str += " | Shapes: min={:}, opt={:}, max={:}\n".format(min_shape, opt_shape, max_shape)
            else:
                engine_str += " | Shape: {:}".format(tuple(output_metadata[engine[offset]][1]))
        engine_str += "\n"
    return misc.indent_block(engine_str, level=0)
示例#6
0
def str_from_graph(graph, mode):
    graph_str = ""
    input_metadata = get_input_metadata(graph)
    output_metadata = get_output_metadata(graph)

    graph_str += "---- {:} Graph Inputs ----\n{:}\n\n".format(len(input_metadata), input_metadata)
    graph_str += "---- {:} Graph Outputs ----\n{:}\n\n".format(len(output_metadata), output_metadata)
    graph_str += "---- {:} Nodes ----\n".format(len(graph.as_graph_def().node))
    if mode == "basic":
        G_LOGGER.warning("Displaying layer information is unsupported for TensorFlow graphs. "
                         "Please use --mode=full if you would like to see the raw nodes")
        if mode == "full":
            for node in graph.as_graph_def().node:
                graph_str += str(node) + "\n"
        graph_str += "\n"
    return misc.indent_block(graph_str, level=0)
示例#7
0
 def process_attr(attr_str: str):
     processed = getattr(attr, ONNX_PYTHON_ATTR_MAPPING[attr_str])
     if attr_str == "STRING":
         processed = processed.decode()
     elif attr_str == "TENSOR":
         tensor_str = "Tensor: [dtype={:}, shape={:}]".format(get_dtype(processed), get_shape(processed))
         if mode == "full":
             tensor_str += " | Values:\n" + misc.indent_block(str(get_values(processed)))
         processed = tensor_str
     elif attr_str == "GRAPH":
         processed = "\n" + str_from_onnx_graph(processed, mode, tensors, indent_level=indent_level + 2)
     elif attr_str == "FLOATS" or attr_str == "INTS":
         # Proto hacky list to normal Python list
         processed = [p for p in processed]
     elif attr_str == "STRINGS":
         processed = [p.decode() for p in processed]
     return processed
示例#8
0
        def execute_runner(runner, loader_cache):
            with runner as active_runner:
                input_metadata = active_runner.get_input_metadata()
                G_LOGGER.info("Runner: {:40} | Input Metadata: {:}".format(
                    active_runner.name, input_metadata),
                              mode=LogMode.ONCE)
                # DataLoaderCache will ensure that the feed_dict does not contain any extra entries
                # based on the provided input_metadata.
                loader_cache.set_input_metadata(input_metadata)

                if warm_up:
                    G_LOGGER.start(
                        "Runner: {:40} | Running {:} warm-up runs".format(
                            active_runner.name, warm_up))
                    try:
                        feed_dict = loader_cache[0]
                    except IndexError:
                        G_LOGGER.warning(
                            "{:} warm-up runs were requested, but data loader did not supply any data. "
                            "Skipping warm-up runs".format(warm_up))
                    else:
                        G_LOGGER.ultra_verbose(
                            "Warm-up Input Buffers:\n{:}".format(
                                misc.indent_block(feed_dict)))
                        # First do a few warm-up runs, and don't time them.
                        for i in range(warm_up):
                            active_runner.infer(feed_dict=feed_dict)

                # Then, actual iterations.
                index = 0
                iteration_results = []
                output_metadata = TensorMetadata()

                for index, feed_dict in enumerate(loader_cache):
                    G_LOGGER.extra_verbose(
                        lambda: "Runner: {:40} | Feeding inputs:\n{:}".format(
                            active_runner.name, misc.indent_block(feed_dict)))
                    outputs = active_runner.infer(feed_dict=feed_dict)

                    runtime = active_runner.last_inference_time()
                    # Without a deep copy here, outputs will always reference the output of the last run
                    iteration_results.append(
                        IterationResult(outputs=copy.deepcopy(outputs),
                                        runtime=runtime,
                                        runner_name=active_runner.name))

                    if index == 0:
                        for name, out in outputs.items():
                            output_metadata.add(name, out.dtype, out.shape)

                    G_LOGGER.info(
                        "Runner: {:40} | Output Metadata: {:}".format(
                            active_runner.name, output_metadata),
                        mode=LogMode.ONCE)
                    G_LOGGER.extra_verbose(
                        lambda:
                        "Runner: {:40} | Inference Time: {:.3f} ms | Received outputs:\n{:}"
                        .format(active_runner.name, runtime * 1000.0,
                                misc.indent_block(outputs)))

                G_LOGGER.finish(
                    "Runner: {:40} | Completed {:} iterations.".format(
                        active_runner.name, index + 1))
                return iteration_results
示例#9
0
            def check_outputs_match(out0, out0_name, out1, out1_name, per_out_rtol, per_out_atol):
                def compute_max(buffer):
                    if misc.is_empty_shape(buffer.shape):
                        return 0
                    return np.amax(buffer)

                # Returns index of max value
                def compute_argmax(buffer):
                    if misc.is_empty_shape(buffer.shape):
                        return 0
                    return np.unravel_index(np.argmax(buffer), buffer.shape)

                def compute_min(buffer):
                    if misc.is_empty_shape(buffer.shape):
                        return 0
                    return np.amin(buffer)

                # Returns index of min value
                def compute_argmin(buffer):
                    if misc.is_empty_shape(buffer.shape):
                        return 0
                    return np.unravel_index(np.argmin(buffer), buffer.shape)

                def compute_mean(buffer):
                    if misc.is_empty_shape(buffer.shape):
                        return 0
                    return np.mean(buffer)


                def compute_required():
                    # The purpose of this function is to determine the minimum tolerances such that
                    # the outputs would be considered a match.
                    # The NumPy formula for np.isclose is absolute(out0 - out1) <= (per_out_atol + per_out_rtol * absolute(out1))
                    # So, for both absolute/relative tolerance, given either one,
                    # we can compute the required value for the other:
                    # per_out_atol = absolute(out0 - out1)
                    # atol_if_rtol = absolute(out0 - out1)  - per_out_rtol * absolute(out1)
                    # per_out_rtol = (absolute(out0 - out1) - per_out_atol) / absolute(out1)
                    if np.issubdtype(out0.dtype, np.bool_) and np.issubdtype(out1.dtype, np.bool_):
                        absdiff = np.logical_xor(out0, out1)
                    else:
                        absdiff = np.abs(out0 - out1)
                    absout1 = np.abs(out1)
                    max_absdiff = max(compute_max(absdiff), 0.0)
                    required_atol_if_rtol = max(compute_max(absdiff - per_out_rtol * absout1), 0.0)
                    # Suppress divide by 0 warnings
                    with np.testing.suppress_warnings() as sup:
                        sup.filter(RuntimeWarning)
                        reldiff = np.maximum(absdiff - per_out_atol, 0.0) / absout1
                        max_reldiff = max(compute_max(reldiff), 0.0)
                    return max_absdiff, required_atol_if_rtol, max_reldiff, compute_mean(absdiff), compute_mean(reldiff)


                def log_mismatches(mismatches):
                    try:
                        with G_LOGGER.indent():
                            G_LOGGER.super_verbose("Mismatched indices:\n{:}".format(np.argwhere(mismatches)))
                            G_LOGGER.extra_verbose("Runner: {:40} | Mismatched values:\n{:}".format(iter_result0.runner_name, out0[mismatches]))
                            G_LOGGER.extra_verbose("Runner: {:40} | Mismatched values:\n{:}".format(iter_result1.runner_name, out1[mismatches]))
                    except:
                        G_LOGGER.warning("Failing to log mismatches - this may be because the outputs are of different shapes")


                try:
                    mismatches = np.logical_not(np.isclose(output0, output1, rtol=per_out_rtol, atol=per_out_atol))
                except Exception as err:
                    G_LOGGER.warning("Failed to compare outputs with:\n{:}\nSkipping".format(err))
                    return False

                G_LOGGER.super_verbose("Runner: {:40} | Output: {:} (dtype={:}, shape={:}):\n{:}".format(
                                            iter_result0.runner_name, out0_name, out0.dtype, out0.shape, misc.indent_block(out0)))
                G_LOGGER.super_verbose("Runner: {:40} | Output: {:} (dtype={:}, shape={:}):\n{:}".format(
                                            iter_result1.runner_name, out1_name, out1.dtype, out1.shape, misc.indent_block(out1)))

                failed = np.any(mismatches)

                try:
                    max_absdiff, required_atol_if_rtol, max_reldiff, mean_absdiff, mean_reldiff = compute_required()
                except Exception as err:
                    max_absdiff, required_atol_if_rtol, max_reldiff, mean_absdiff, mean_reldiff = None, None, None, None, None
                    G_LOGGER.warning("Could not determine required tolerances due to an error:\n{:}".format(err))
                    log_msg = ""
                else:
                    log_msg = "Required tolerances: [atol={:.5g}] OR [rtol={:.5g}, atol={:.5g}] OR [rtol={:.5g}, atol={:.5g}] | Mean Error: Absolute={:.5g}, Relative={:.5g}\n".format(
                                    max_absdiff, per_out_rtol, required_atol_if_rtol, max_reldiff, per_out_atol, mean_absdiff, mean_reldiff)

                log_msg += "Runner: {:40} | Stats: mean={:.5g}, min={:.5g} at {:}, max={:.5g} at {:}\n".format(
                                iter_result0.runner_name, compute_mean(out0), compute_min(out0), compute_argmin(out0), compute_max(out0), compute_argmax(out0))
                log_msg += "Runner: {:40} | Stats: mean={:.5g}, min={:.5g} at {:}, max={:.5g} at {:}\n".format(
                                iter_result1.runner_name, compute_mean(out1), compute_min(out1), compute_argmin(out1), compute_max(out1), compute_argmax(out1))
                G_LOGGER.info(log_msg)

                if failed:
                    log_mismatches(mismatches)
                    G_LOGGER.error("FAILED | Difference exceeds tolerance (rtol={:}, atol={:})".format(per_out_rtol, per_out_atol))
                else:
                    G_LOGGER.finish("PASSED | Difference is within tolerance (rtol={:}, atol={:})".format(per_out_rtol, per_out_atol))

                G_LOGGER.extra_verbose("Finished comparing: '{:}' (dtype={:}, shape={:}) [{:}] and '{:}' (dtype={:}, shape={:}) [{:}]"
                                .format(out0_name, out0.dtype, out0.shape, iter_result0.runner_name, out1_name, out1.dtype, out1.shape, iter_result1.runner_name))
                return OutputCompareResult(not failed, max_absdiff, max_reldiff)
示例#10
0
def str_from_onnx_graph(graph, mode, tensors, indent_level=0):
    import onnx

    input_metadata = get_input_metadata(graph)
    output_metadata = get_output_metadata(graph)
    initializer_metadata = get_tensor_metadata(graph.initializer)

    # Subgraph inputs should remain separate from each other, hence copy the tensors map
    tensors = copy.copy(tensors)
    tensors.update(get_tensor_metadata(graph.value_info))
    tensors.update(initializer_metadata)
    tensors.update(input_metadata)
    tensors.update(output_metadata)

    graph_type = "Graph" if indent_level == 0 else "Subgraph"

    onnx_str = ""
    onnx_str += "---- {:} {:} Inputs ----\n{:}\n\n".format(len(input_metadata), graph_type, input_metadata)
    onnx_str += "---- {:} {:} Outputs ----\n{:}\n\n".format(len(output_metadata), graph_type, output_metadata)

    onnx_str += "---- {:} Initializers ----\n".format(len(initializer_metadata))
    if mode == "full":
        for init in graph.initializer:
            onnx_str += "Initializer | {:} [dtype={:}, shape={:}] | Values:\n{:}\n\n".format(
                            init.name, get_dtype(init), get_shape(init), misc.indent_block(str(get_values(init))))
        if not graph.initializer:
            onnx_str += "\n"
    elif mode != "none":
        onnx_str += str(initializer_metadata)
        onnx_str += "\n\n"
    else:
        onnx_str += "(Use --mode to display)"
        onnx_str += "\n\n"


    def metadata_from_names(names):
        metadata = TensorMetadata()
        for name in names:
            dtype = None
            shape = None
            if name in tensors:
                dtype, shape = tensors[name]
            if name in initializer_metadata:
                name = "Initializer | {:}".format(name)
            metadata.add(name=name, dtype=dtype, shape=shape)
        return metadata

    # Maps values from the AttributeType enum to their string representations, e.g., {1: "FLOAT"}
    ATTR_TYPE_MAPPING = dict(zip(onnx.AttributeProto.AttributeType.values(), onnx.AttributeProto.AttributeType.keys()))

    # Maps an ONNX attribute to the corresponding Python property
    ONNX_PYTHON_ATTR_MAPPING = {
        "FLOAT": "f",
        "INT": "i",
        "STRING": "s",
        "TENSOR": "t",
        "GRAPH": "g",
        "FLOATS": "floats",
        "INTS": "ints",
        "STRINGS": "strings",
    }

    def attrs_to_dict(attrs):
        attr_dict = OrderedDict()
        for attr in attrs:
            def process_attr(attr_str: str):
                processed = getattr(attr, ONNX_PYTHON_ATTR_MAPPING[attr_str])
                if attr_str == "STRING":
                    processed = processed.decode()
                elif attr_str == "TENSOR":
                    tensor_str = "Tensor: [dtype={:}, shape={:}]".format(get_dtype(processed), get_shape(processed))
                    if mode == "full":
                        tensor_str += " | Values:\n" + misc.indent_block(str(get_values(processed)))
                    processed = tensor_str
                elif attr_str == "GRAPH":
                    processed = "\n" + str_from_onnx_graph(processed, mode, tensors, indent_level=indent_level + 2)
                elif attr_str == "FLOATS" or attr_str == "INTS":
                    # Proto hacky list to normal Python list
                    processed = [p for p in processed]
                elif attr_str == "STRINGS":
                    processed = [p.decode() for p in processed]
                return processed

            if attr.type in ATTR_TYPE_MAPPING:
                attr_str = ATTR_TYPE_MAPPING[attr.type]
                if attr_str in ONNX_PYTHON_ATTR_MAPPING:
                    attr_dict[attr.name] = process_attr(attr_str)
                else:
                    G_LOGGER.warning("Attribute of type {:} is currently unsupported. Skipping attribute.".format(attr_str))
            else:
                G_LOGGER.warning("Attribute type: {:} was not recognized. Was the graph generated with a newer IR "
                                "version than the installed `onnx` package? Skipping attribute.".format(attr.type))
        return attr_dict


    onnx_str += "---- {:} Nodes ----\n".format(len(graph.node))
    if mode != "none":
        for index, node in enumerate(graph.node):
            input_info = metadata_from_names(node.input)
            output_info = metadata_from_names(node.output)

            onnx_str += misc.str_from_layer("Node", index, node.name, node.op_type, input_info, output_info)

            if mode in ["attrs", "full"]:
                attrs = attrs_to_dict(node.attribute)
                if attrs:
                    onnx_str += misc.indent_block("---- Attributes ----") + "\n"
                for key, val in attrs.items():
                    if node.name:
                        onnx_str += "{:}.".format(node.name)
                    onnx_str += misc.indent_block("{:} = {:}".format(key, val)) + "\n"
            onnx_str += "\n"
    else:
        onnx_str += "(Use --mode to display)"

    return misc.indent_block(onnx_str, indent_level)
示例#11
0
def str_from_network(network, mode="full"):
    """
    Converts a TensorRT network to a human-readable representation

    Args:
        network (trt.INetworkDefinition): The network.
        mode (str): Controls what is displayed for each layer. Choices: ["none", "basic", "attrs", "full"]

    Returns:
        str
    """
    import numpy as np

    try:
        LAYER_TYPE_CLASS_MAPPING = get_layer_class_mapping()
    except AttributeError:
        LAYER_TYPE_CLASS_MAPPING = {}

    def is_special_attribute(attr):
        return attr.startswith("__") and attr.endswith("__")

    def is_valid_attribute(attr, layer):
        if type(layer) == trt.IPoolingLayer or type(layer) == trt.IConvolutionLayer or type(layer) == trt.IDeconvolutionLayer:
            if len(layer.get_input(0).shape) > 4:
                # 3D pooling uses padding_nd
                return attr not in ["padding", "stride", "window_size"]
        if type(layer) == trt.IResizeLayer:
            if layer.num_inputs > 1:
                return attr not in ["scales"]
        if type(layer) == trt.ISliceLayer:
            if layer.num_inputs > 1:
                return attr not in ["shape", "start", "stride"]
        return True

    def get_layer_input_metadata(layer):
        meta = TensorMetadata()
        for i in range(layer.num_inputs):
            inp = layer.get_input(i)
            if inp:
                meta.add(inp.name, trt.nptype(inp.dtype), inp.shape)
        return meta

    def get_layer_output_metadata(layer):
        meta = TensorMetadata()
        for i in range(layer.num_outputs):
            outp = layer.get_output(i)
            if outp:
                meta.add(outp.name, trt.nptype(outp.dtype), outp.shape)
        return meta


    network_str = "Name: {:} | {:} Batch Network{:}\n".format(network.name,
                    "Implicit" if hasattr(network, "has_implicit_batch_dimension") and network.has_implicit_batch_dimension else "Explicit",
                    " with Explicit Precision " if hasattr(network, "has_explicit_precision") and network.has_explicit_precision else "")
    network_str += "\n"

    input_metadata = get_input_metadata(network)
    network_str += "---- {:} Network Inputs ----\n{:}\n\n".format(len(input_metadata), input_metadata)
    output_metadata = get_output_metadata(network)
    network_str += "---- {:} Network Outputs ----\n{:}\n\n".format(len(output_metadata), output_metadata)
    network_str += "---- {:} Layers ----\n".format(network.num_layers)
    if mode != "none":
        for index, layer in enumerate(network):
            if layer.type in LAYER_TYPE_CLASS_MAPPING:
                layer.__class__ = LAYER_TYPE_CLASS_MAPPING[layer.type]

            input_info = get_layer_input_metadata(layer)
            output_info = get_layer_output_metadata(layer)

            network_str += misc.str_from_layer("Layer", index, layer.name, layer.type, input_info, output_info)

            if mode in ["attrs", "full"]:
                # Exclude special attributes, as well as any attributes of the base layer class (those can be displayed above).
                attrs = [attr for attr in dir(layer) if not is_special_attribute(attr) and not hasattr(trt.ILayer, attr) and is_valid_attribute(attr, layer)]
                if attrs:
                    network_str += misc.indent_block("---- Attributes ----") + "\n"
                for attr in attrs:
                    val = getattr(layer, attr)
                    if mode == "full" or not isinstance(val, np.ndarray):
                        attr_str = ""
                        if layer.name:
                            attr_str += "{:}.".format(layer.name)
                        network_str += misc.indent_block("{:}{:} = {:}".format(attr_str, attr, val)) + "\n"
            network_str += "\n"
    else:
        network_str += "(Use --mode to display)"

    return misc.indent_block(network_str, level=0)