# isolated=True, # runs_path=Path(__file__).parent.parent / 'runs', ): # load hyper-parameter settings with (param_path / 'param2val.yaml').open('r') as f: param2val = yaml.load(f, Loader=yaml.FullLoader) params = Params.from_param2val(param2val) # re-generate data the way it was during training world = World(params) dataset = DataSet(world.generate_sequences( leftout_colors=params.leftout_colors, leftout_shapes=params.leftout_shapes, leftout_variants=params.leftout_variants, leftout_positions=get_leftout_positions(params.leftout_half), ), params, name='re-generated') # multiple models may exist for the same hyper-parameter configuration for path_to_net in list(param_path.rglob('model.pt')): print(f'Loading net from {path_to_net}') # load net net = Network(params) state_dict = torch.load(path_to_net, map_location=torch.device('cpu')) net.load_state_dict(state_dict) net.requires_grad_(False)
isolated=True, runs_path=Path(__file__).parent.parent / 'runs', ): # load hyper-parameter settings with (param_path / 'param2val.yaml').open('r') as f: param2val = yaml.load(f, Loader=yaml.FullLoader) params = Params.from_param2val(param2val) # use all locations, rotations, shapes, and colors - and filter later world = World(params) data = DataSet(world.generate_sequences( leftout_colors=('', ), leftout_shapes=('', ), leftout_variants='', leftout_positions=get_leftout_positions(''), ), params, name='re-generated') if RGB_ID is not None: name_of_color_channel = {0: 'red', 1: 'green', 2: 'blue'}[RGB_ID] else: name_of_color_channel = None # multiple models may exist for the same hyper-parameter configuration - use first only for path_to_net in list(param_path.rglob('model.pt'))[:1]: print(f'Loading net from {path_to_net}') # load net