示例#1
0
def test_io_fit():
    d1 = DiscreteDistribution({True: 0.6, False: 0.4})
    d2 = ConditionalProbabilityTable([
        [True, 'A', 0.2],
        [True, 'B', 0.8],
        [False, 'A', 0.3],
        [False, 'B', 0.7]], [d1])
    d3 = ConditionalProbabilityTable([
        ['A', 0, 0.3],
        ['A', 1, 0.7],
        ['B', 0, 0.8],
        ['B', 1, 0.2]], [d2])

    n1 = Node(d1)
    n2 = Node(d2)
    n3 = Node(d3)

    model1 = BayesianNetwork()
    model1.add_nodes(n1, n2, n3)
    model1.add_edge(n1, n2)
    model1.add_edge(n2, n3)
    model1.bake()
    model1.fit(X, weights=weights)

    d1 = DiscreteDistribution({True: 0.2, False: 0.8})
    d2 = ConditionalProbabilityTable([
        [True, 'A', 0.7],
        [True, 'B', 0.2],
        [False, 'A', 0.4],
        [False, 'B', 0.6]], [d1])
    d3 = ConditionalProbabilityTable([
        ['A', 0, 0.9],
        ['A', 1, 0.1],
        ['B', 0, 0.0],
        ['B', 1, 1.0]], [d2])

    n1 = Node(d1)
    n2 = Node(d2)
    n3 = Node(d3)

    model2 = BayesianNetwork()
    model2.add_nodes(n1, n2, n3)
    model2.add_edge(n1, n2)
    model2.add_edge(n2, n3)
    model2.bake()
    model2.fit(data_generator)

    logp1 = model1.log_probability(X)
    logp2 = model2.log_probability(X)

    assert_array_almost_equal(logp1, logp2)
示例#2
0
def setup_titanic():
    # Build a model of the titanic disaster
    global titanic_network, passenger, gender, tclass

    # Passengers on the Titanic either survive or perish
    passenger = DiscreteDistribution({'survive': 0.6, 'perish': 0.4})

    # Gender, given survival data
    gender = ConditionalProbabilityTable(
        [['survive', 'male', 0.0], ['survive', 'female', 1.0],
         ['perish', 'male', 1.0], ['perish', 'female', 0.0]], [passenger])

    # Class of travel, given survival data
    tclass = ConditionalProbabilityTable(
        [['survive', 'first', 0.0], ['survive', 'second', 1.0],
         ['survive', 'third', 0.0], ['perish', 'first', 1.0],
         ['perish', 'second', 0.0], ['perish', 'third', 0.0]], [passenger])

    # State objects hold both the distribution, and a high level name.
    s1 = State(passenger, name="passenger")
    s2 = State(gender, name="gender")
    s3 = State(tclass, name="class")

    # Create the Bayesian network object with a useful name
    titanic_network = BayesianNetwork("Titanic Disaster")

    # Add the three nodes to the network
    titanic_network.add_nodes(s1, s2, s3)

    # Add transitions which represent conditional dependencies, where the
    # second node is conditionally dependent on the first node (Monty is
    # dependent on both guest and prize)
    titanic_network.add_edge(s1, s2)
    titanic_network.add_edge(s1, s3)
    titanic_network.bake()
    def get_bayesnet(self):
        door_lock = DiscreteDistribution({'d1': 0.7, 'd2': 0.3})

        clock_alarm = DiscreteDistribution( { 'a1' : 0.8, 'a2' : 0.2} )

        light = ConditionalProbabilityTable(
            [[ 'd1', 'a1', 'l1', 0.96 ],
             ['d1', 'a1', 'l2', 0.04 ],
             [ 'd1', 'a2', 'l1', 0.89 ],
             [ 'd1', 'a2', 'l2', 0.11 ],
             [ 'd2', 'a1', 'l1', 0.96 ],
             [ 'd2', 'a1', 'l2', 0.04 ],
             [ 'd2', 'a2', 'l1', 0.89 ],
             [ 'd2', 'a2', 'l2', 0.11 ]], [door_lock, clock_alarm])



        coffee_maker = ConditionalProbabilityTable(
            [[ 'a1', 'c1', 0.92 ],
             [ 'a1', 'c2', 0.08 ],
             [ 'a2', 'c1', 0.03 ],
             [ 'a2', 'c2', 0.97 ]], [clock_alarm] )

        s_door_lock = State(door_lock, name="door_lock")
        s_clock_alarm = State(clock_alarm, name="clock_alarm")
        s_light = State(light, name="light")
        s_coffee_maker = State(coffee_maker, name="coffee_maker")
        network = BayesianNetwork("User_pref")
        network.add_nodes(s_door_lock, s_clock_alarm, s_light, s_coffee_maker)

        network.add_edge(s_door_lock,s_light)
        network.add_edge(s_clock_alarm,s_coffee_maker)
        network.add_edge(s_clock_alarm,s_light)
        network.bake()
        return network
示例#4
0
def setup_monty():
    # Build a model of the Monty Hall Problem
    global monty_network, monty_index, prize_index, guest_index

    random.seed(0)

    # Friends emissions are completely random
    guest = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})

    # The actual prize is independent of the other distributions
    prize = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
    # Monty is dependent on both the guest and the prize.
    monty = ConditionalProbabilityTable(
        [['A', 'A', 'A', 0.0],
         ['A', 'A', 'B', 0.5],
         ['A', 'A', 'C', 0.5],
         ['A', 'B', 'A', 0.0],
         ['A', 'B', 'B', 0.0],
         ['A', 'B', 'C', 1.0],
         ['A', 'C', 'A', 0.0],
         ['A', 'C', 'B', 1.0],
         ['A', 'C', 'C', 0.0],
         ['B', 'A', 'A', 0.0],
         ['B', 'A', 'B', 0.0],
         ['B', 'A', 'C', 1.0],
         ['B', 'B', 'A', 0.5],
         ['B', 'B', 'B', 0.0],
         ['B', 'B', 'C', 0.5],
         ['B', 'C', 'A', 1.0],
         ['B', 'C', 'B', 0.0],
         ['B', 'C', 'C', 0.0],
         ['C', 'A', 'A', 0.0],
         ['C', 'A', 'B', 1.0],
         ['C', 'A', 'C', 0.0],
         ['C', 'B', 'A', 1.0],
         ['C', 'B', 'B', 0.0],
         ['C', 'B', 'C', 0.0],
         ['C', 'C', 'A', 0.5],
         ['C', 'C', 'B', 0.5],
         ['C', 'C', 'C', 0.0]], [guest, prize])

    # Make the states
    s1 = State(guest, name="guest")
    s2 = State(prize, name="prize")
    s3 = State(monty, name="monty")

    # Make the bayes net, add the states, and the conditional dependencies.
    monty_network = BayesianNetwork("test")
    monty_network.add_nodes(s1, s2, s3)
    monty_network.add_edge(s1, s3)
    monty_network.add_edge(s2, s3)
    monty_network.bake()

    monty_index = monty_network.states.index(s3)
    prize_index = monty_network.states.index(s2)
    guest_index = monty_network.states.index(s1)
示例#5
0
    def __init__(self):
        Pollution = DiscreteDistribution({'F': 0.9, 'T': 0.1})
        Smoker = DiscreteDistribution({'T': 0.3, 'F': 0.7})
        print(Smoker)
        Cancer = ConditionalProbabilityTable([
            ['T', 'T', 'T', 0.05],
            ['T', 'T', 'F', 0.95],
            ['T', 'F', 'T', 0.02],
            ['T', 'F', 'F', 0.98],
            ['F', 'T', 'T', 0.03],
            ['F', 'T', 'F', 0.97],
            ['F', 'F', 'T', 0.001],
            ['F', 'F', 'F', 0.999],
        ], [Pollution, Smoker])
        print(Cancer)
        XRay = ConditionalProbabilityTable([
            ['T', 'T', 0.9],
            ['T', 'F', 0.1],
            ['F', 'T', 0.2],
            ['F', 'F', 0.8],
        ], [Cancer])
        Dyspnoea = ConditionalProbabilityTable([
            ['T', 'T', 0.65],
            ['T', 'F', 0.35],
            ['F', 'T', 0.3],
            ['F', 'F', 0.7],
        ], [Cancer])
        s1 = Node(Pollution, name="Pollution")
        s2 = Node(Smoker, name="Smoker")
        s3 = Node(Cancer, name="Cancer")
        s4 = Node(XRay, name="XRay")
        s5 = Node(Dyspnoea, name="Dyspnoea")

        model = BayesianNetwork("Lung Cancer")
        model.add_states(s1, s2, s3, s4, s5)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.add_edge(s3, s4)
        model.add_edge(s3, s5)
        model.bake()
        self.model = model

        meta = []
        name_mapper = ["Pollution", "Smoker", "Cancer", "XRay", "Dyspnoea"]
        for i in range(self.model.node_count()):
            meta.append({
                "name": name_mapper[i],
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        self.meta = meta
示例#6
0
    def __init__(self):
        A = DiscreteDistribution({'1': 1. / 3, '2': 1. / 3, '3': 1. / 3})
        B = ConditionalProbabilityTable([
            ['1', '1', 0.5],
            ['1', '2', 0.5],
            ['1', '3', 0],
            ['2', '1', 0],
            ['2', '2', 0.5],
            ['2', '3', 0.5],
            ['3', '1', 0.5],
            ['3', '2', 0],
            ['3', '3', 0.5],
        ], [A])
        C = ConditionalProbabilityTable([
            ['1', '4', 0.5],
            ['1', '5', 0.5],
            ['1', '6', 0],
            ['2', '4', 0],
            ['2', '5', 0.5],
            ['2', '6', 0.5],
            ['3', '4', 0.5],
            ['3', '5', 0],
            ['3', '6', 0.5],
        ], [A])

        s1 = Node(A, name="A")
        s2 = Node(B, name="B")
        s3 = Node(C, name="C")

        model = BayesianNetwork("tree")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count() - 1):
            meta.append({
                "name": chr(ord('A') + i),
                "type": "categorical",
                "size": 3,
                "i2s": ['1', '2', '3']
            })
        meta.append({
            "name": "C",
            "type": "categorical",
            "size": 3,
            "i2s": ['4', '5', '6']
        })
        self.meta = meta
示例#7
0
def build_net(cpts):
    states = dict()
    for name, cpt in cpts.items():
        states[name] = State(cpt, name=name)

    model = BayesianNetwork('Poker Game')
    model.add_states(*list(states.values()))

    for name, parents, _ in sheets:
        for parent in parents:
            print(states[parent])
            model.add_transition(states[parent], states[name])

    model.bake()
    return model
示例#8
0
    def __init__(self):
        Rain = DiscreteDistribution({'T': 0.2, 'F': 0.8})
        Sprinkler = ConditionalProbabilityTable([
            ['F', 'T', 0.4],
            ['F', 'F', 0.6],
            ['T', 'T', 0.1],
            ['T', 'F', 0.9],
        ], [Rain])
        Wet = ConditionalProbabilityTable([
            ['F', 'F', 'T', 0.01],
            ['F', 'F', 'F', 0.99],
            ['F', 'T', 'T', 0.8],
            ['F', 'T', 'F', 0.2],
            ['T', 'F', 'T', 0.9],
            ['T', 'F', 'F', 0.1],
            ['T', 'T', 'T', 0.99],
            ['T', 'T', 'F', 0.01],
        ], [Sprinkler, Rain])

        s1 = Node(Rain, name="Rain")
        s2 = Node(Sprinkler, name="Sprinkler")
        s3 = Node(Wet, name="Wet")

        model = BayesianNetwork("Simple fully connected")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count()):
            meta.append({
                "name": None,
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        meta[0]['name'] = 'Rain'
        meta[1]['name'] = 'Sprinkler'
        meta[2]['name'] = 'Wet'
        self.meta = meta
示例#9
0
def pomegranate_User_pref():
    door_lock = DiscreteDistribution({'True': 0.7, 'False': 0.3})

    thermostate = ConditionalProbabilityTable(
        [['True', 'True', 0.2], ['True', 'False', 0.8],
         ['False', 'True', 0.01], ['False', 'False', 0.99]], [door_lock])
    clock_alarm = DiscreteDistribution({'True': 0.8, 'False': 0.2})

    light = ConditionalProbabilityTable(
        [['True', 'True', 'True', 0.96], ['True', 'True', 'False', 0.04],
         ['True', 'False', 'True', 0.89], ['True', 'False', 'False', 0.11],
         ['False', 'True', 'True', 0.96], ['False', 'True', 'False', 0.04],
         ['False', 'False', 'True', 0.89], ['False', 'False', 'False', 0.11]],
        [door_lock, clock_alarm])

    coffee_maker = ConditionalProbabilityTable(
        [['True', 'True', 0.92], ['True', 'False', 0.08],
         ['False', 'True', 0.03], ['False', 'False', 0.97]], [clock_alarm])

    window = ConditionalProbabilityTable(
        [['True', 'True', 0.885], ['True', 'False', 0.115],
         ['False', 'True', 0.04], ['False', 'False', 0.96]], [thermostate])

    s0_door_lock = State(door_lock, name="door_lock")
    s1_clock_alarm = State(clock_alarm, name="clock_alarm")
    s2_light = State(light, name="light")
    s3_coffee_maker = State(coffee_maker, name="coffee_maker")
    s4_thermostate = State(thermostate, name="thermostate")
    s5_window = State(window, name="Window")
    network = BayesianNetwork("User_pref")
    network.add_nodes(s0_door_lock, s1_clock_alarm, s2_light, s3_coffee_maker,
                      s4_thermostate, s5_window)

    network.add_edge(s0_door_lock, s2_light)
    network.add_edge(s0_door_lock, s4_thermostate)
    network.add_edge(s1_clock_alarm, s3_coffee_maker)
    network.add_edge(s1_clock_alarm, s2_light)
    network.add_edge(s4_thermostate, s5_window)
    network.bake()
    return network
示例#10
0
def BIC_score(data,Pa,card,struct):    
    #
    z = []
    for ii in range(len(Pa)):
        zz = Pa[ii].copy()
        zz.append(ii)
        z.append(zz)
    
    for ii in range(len(z)-1):
        for jj in range(ii+1,len(z)):
            if len(set(z[ii]) - (set(z[ii]) - set(z[jj])))>0:
                z[ii] = list(set(z[ii]+z[jj]))
                z[jj] = list(set(z[ii]+z[jj]))
    ss=100000000
    for ii in range(len(z)):
        if len(z[ii])==len(z):
           ss=0
    #    
    model = BayesianNetwork()
    model = BayesianNetwork.from_structure(data,struct)
    BIC = model.log_probability(data).sum() - np.log(data.shape[0])*indep_params(Pa,card)/2 - ss
    return BIC
示例#11
0
 def __get_bayesian_network_model(
     self,
     symptom_distributions: List,
     symptom_states: List,
     file_name: str,
     disease_name: str,
 ):
     disease_conditional_distribution = list()
     for (s1, s2, s3, s4, s5, d, p) in get_from_csv(file_name):
         disease_conditional_distribution.append(
             [s1, s2, s3, s4, s5, d, float(p)])
     disease_distribution = ConditionalProbabilityTable(
         disease_conditional_distribution,
         symptom_distributions,
     )
     disease = Node(disease_distribution, name=disease_name)
     model = BayesianNetwork(disease_name)
     model.add_state(disease)
     for symptom_state in symptom_states:
         model.add_state(symptom_state)
         model.add_edge(symptom_state, disease)
     model.bake()
     return model
    [fatigue, attention_disorder],
)

sAnxiety = Node(anxiety, name="Anxiety")
sPeerPressure = Node(peer_pressure, name="Peer_Pressure")
sSmoking = Node(smoking, name="Smoking")
sGenetics = Node(genetics, name="Genetics")
sLungCancer = Node(lung_cancer, name="Lung_cancer")
sYellowFingers = Node(yellow_fingers, name="Yellow_Fingers")
sAttentionDisorder = Node(attention_disorder, name="Attention_Disorder")
sCoughing = Node(coughing, name="Coughing")
sFatigue = Node(fatigue, name="Fatigue")
sCarAccident = Node(car_accident, name="Car_Accident")
sAllergy = Node(allergy, name="Allergy")

model = BayesianNetwork("Smoking Risk")
model.add_nodes(
    sAnxiety,
    sPeerPressure,
    sSmoking,
    sGenetics,
    sLungCancer,
    sAllergy,
    sCoughing,
    sFatigue,
    sAttentionDisorder,
    sCarAccident,
)
model.add_edge(sAnxiety, sSmoking)
model.add_edge(sPeerPressure, sSmoking)
model.add_edge(sSmoking, sLungCancer)
示例#13
0
states = {}
states['Anxiety'] = State(Anxiety, name="Anxiety")
states['Peer_Pressure'] = State(Peer_Pressure, name="Peer_Pressure")
states['Smoking'] = State(Smoking, name="Smoking")
states['Yellow_Fingers'] = State(Yellow_Fingers, name="Yellow_Fingers")
states['Genetics'] = State(Genetics, name="Genetics")
states['Lung_cancer'] = State(Lung_cancer, name="Lung_cancer")
states['Attention_Disorder'] = State(Attention_Disorder, name="Attention_Disorder")
states['Allergy'] = State(Allergy, name="Allergy")
states['Coughing'] = State(Coughing, name="Coughing")
states['Born_an_Even_Day'] = State(Born_an_Even_Day, name="Born_an_Even_Day")

states['Fatigue'] = State(Fatigue, name="Fatigue")
states['Car_Accident' ] = State(Car_Accident, name="Car_Accident")

network = BayesianNetwork("Monty hall problem")
network.add_states(*states.values())
network.add_edge(states["Peer_Pressure"],states["Smoking"])
network.add_edge(states["Anxiety"],states["Smoking"])
network.add_edge(states["Smoking"],states["Yellow_Fingers"])
network.add_edge(states["Genetics"],states["Lung_cancer"])
network.add_edge(states["Smoking"],states["Lung_cancer"])
network.add_edge(states["Genetics"],states["Attention_Disorder"])
network.add_edge(states['Lung_cancer'], states["Coughing"])
network.add_edge(states['Allergy'], states["Coughing"])
network.add_edge(states['Coughing'], states["Fatigue"])
network.add_edge(states['Lung_cancer'], states["Fatigue"])
network.add_edge(states["Fatigue"], states["Car_Accident"])
network.add_edge(states["Attention_Disorder"], states["Car_Accident"])
import ast
network.bake()
    def get_BN(self, DAG, child_parent):

        #1. get DAG structure as an arguments
        ################################################
        node_without_parents = [
            e for e in self.nodes if e not in child_parent.keys()
        ]

        # 2 Build BN probability model
        # 2.1 get probabilityDist or conditional prob table
        # bais the prob to task_dict choices
        node_prob_dict = self.get_nodes_prob_dist(node_without_parents,
                                                  child_parent)
        self.npd = node_prob_dict
        # 2.2 Create nodes linked to its parent, parent should be processed first.
        # all node state saved to be added to the BN later
        nodes_state = {}
        # all node dist or CPT saved to link child to parents when building child CPT
        nodes_dist = {}

        # start with root nodes (don't have parents then link child to them)
        # list the list to copy it, otherwise it will point to the self.nodes
        remaining_nodes_list = list(self.nodes)

        for node in node_without_parents:
            prob_dist = node_prob_dict[node]
            # print("Parent", node, prob_dist)
            node_dist = DiscreteDistribution(prob_dist)
            nodes_dist[node] = node_dist
            nodes_state[node] = State(node_dist, name=node)
            # remove from nodes_list
            remaining_nodes_list.remove(node)

        # rest of the node should have parents
        while len(remaining_nodes_list) > 0:
            for node, parent_lst in child_parent.items():
                # if node's parents already created then it can be created now
                if set(parent_lst).issubset(nodes_state.keys()) and \
                    node in remaining_nodes_list:
                    # print("parent child", parent_lst, node, node_prob_dict[node])
                    node_dist = ConditionalProbabilityTable(node_prob_dict[node], \
                                    [nodes_dist[i] for i in parent_lst])

                    nodes_dist[node] = node_dist
                    nodes_state[node] = State(node_dist, name=node)
                    # remove from the node_list
                    remaining_nodes_list.remove(node)

        # 3 Create BN and add the nodes_state
        self.network = BayesianNetwork("User_pref")
        for node, state in nodes_state.items():
            self.network.add_node(state)
            #print("node ", node, " is added!")
            self.BN_node_orders.append(node)

        # 4 Link nodes with edges using nodes_state and DAG.edge
        for a, bs in DAG.edge.items():
            for b in bs.keys():
                self.network.add_edge(nodes_state[a], nodes_state[b])
                # print("Netwoerk:", a, b)
        #       print("Network has ", self.network.node_count() , " nodes and ", self.network.edge_count(), " edges")
        return self.network
示例#15
0
    ["none", "no", "delayed", 0.1],
    ["light", "yes", "on time", 0.6],
    ["light", "yes", "delayed", 0.4],
    ["light", "no", "on time", 0.7],
    ["light", "no", "delayed", 0.3],
    ["heavy", "yes", "on time", 0.4],
    ["heavy", "yes", "delayed", 0.6],
    ["heavy", "no", "on time", 0.5],
    ["heavy", "no", "delayed", 0.5],
], [rain.distribution, maintenance.distribution]),
             name="train")

# Appointment node is conditional on train
appointment = Node(ConditionalProbabilityTable(
    [["on time", "attend", 0.9], ["on time", "miss", 0.1],
     ["delayed", "attend", 0.6], ["delayed", "miss", 0.4]],
    [train.distribution]),
                   name="appointment")

# Create a bayesian network and add the states
model = BayesianNetwork()
model.add_states(rain, maintenance, train, appointment)

# Add edges connecting nodes
model.add_edge(rain, maintenance)
model.add_edge(rain, train)
model.add_edge(maintenance, train)
model.add_edge(train, appointment)

# Finalize model
model.bake()
示例#16
0
def setup_huge_monty():
    # Build the huge monty hall huge_monty_network. This is an example I made
    # up with which may not exactly flow logically, but tests a varied type of
    # tables ensures heterogeneous types of data work together.
    global huge_monty_network, huge_monty_friend, huge_monty_guest, huge_monty
    global huge_monty_remaining, huge_monty_randomize, huge_monty_prize

    # Huge_Monty_Friend
    huge_monty_friend = DiscreteDistribution({True: 0.5, False: 0.5})

    # Huge_Monty_Guest emisisons are completely random
    huge_monty_guest = ConditionalProbabilityTable(
        [[True, 'A', 0.50],
         [True, 'B', 0.25],
         [True, 'C', 0.25],
         [False, 'A', 0.0],
         [False, 'B', 0.7],
         [False, 'C', 0.3]], [huge_monty_friend])

    # Number of huge_monty_remaining cars
    huge_monty_remaining = DiscreteDistribution({0: 0.1, 1: 0.7, 2: 0.2, })

    # Whether they huge_monty_randomize is dependent on the numnber of
    # huge_monty_remaining cars
    huge_monty_randomize = ConditionalProbabilityTable(
        [[0, True, 0.05],
         [0, False, 0.95],
         [1, True, 0.8],
         [1, False, 0.2],
         [2, True, 0.5],
         [2, False, 0.5]], [huge_monty_remaining])

    # Where the huge_monty_prize is depends on if they huge_monty_randomize or
    # not and also the huge_monty_guests huge_monty_friend
    huge_monty_prize = ConditionalProbabilityTable(
        [[True, True, 'A', 0.3],
         [True, True, 'B', 0.4],
         [True, True, 'C', 0.3],
         [True, False, 'A', 0.2],
         [True, False, 'B', 0.4],
         [True, False, 'C', 0.4],
         [False, True, 'A', 0.1],
         [False, True, 'B', 0.9],
         [False, True, 'C', 0.0],
         [False, False, 'A', 0.0],
         [False, False, 'B', 0.4],
         [False, False, 'C', 0.6]], [huge_monty_randomize, huge_monty_friend])

    # Monty is dependent on both the huge_monty_guest and the huge_monty_prize.
    huge_monty = ConditionalProbabilityTable(
        [['A', 'A', 'A', 0.0],
         ['A', 'A', 'B', 0.5],
         ['A', 'A', 'C', 0.5],
         ['A', 'B', 'A', 0.0],
         ['A', 'B', 'B', 0.0],
         ['A', 'B', 'C', 1.0],
         ['A', 'C', 'A', 0.0],
         ['A', 'C', 'B', 1.0],
         ['A', 'C', 'C', 0.0],
         ['B', 'A', 'A', 0.0],
         ['B', 'A', 'B', 0.0],
         ['B', 'A', 'C', 1.0],
         ['B', 'B', 'A', 0.5],
         ['B', 'B', 'B', 0.0],
         ['B', 'B', 'C', 0.5],
         ['B', 'C', 'A', 1.0],
         ['B', 'C', 'B', 0.0],
         ['B', 'C', 'C', 0.0],
         ['C', 'A', 'A', 0.0],
         ['C', 'A', 'B', 1.0],
         ['C', 'A', 'C', 0.0],
         ['C', 'B', 'A', 1.0],
         ['C', 'B', 'B', 0.0],
         ['C', 'B', 'C', 0.0],
         ['C', 'C', 'A', 0.5],
         ['C', 'C', 'B', 0.5],
         ['C', 'C', 'C', 0.0]], [huge_monty_guest, huge_monty_prize])

    # Make the states
    s0 = State(huge_monty_friend, name="huge_monty_friend")
    s1 = State(huge_monty_guest, name="huge_monty_guest")
    s2 = State(huge_monty_prize, name="huge_monty_prize")
    s3 = State(huge_monty, name="huge_monty")
    s4 = State(huge_monty_remaining, name="huge_monty_remaining")
    s5 = State(huge_monty_randomize, name="huge_monty_randomize")

    # Make the bayes net, add the states, and the conditional dependencies.
    huge_monty_network = BayesianNetwork("test")
    huge_monty_network.add_nodes(s0, s1, s2, s3, s4, s5)
    huge_monty_network.add_transition(s0, s1)
    huge_monty_network.add_transition(s1, s3)
    huge_monty_network.add_transition(s2, s3)
    huge_monty_network.add_transition(s4, s5)
    huge_monty_network.add_transition(s5, s2)
    huge_monty_network.add_transition(s0, s2)
    huge_monty_network.bake()
示例#17
0
    def __init__(self, filename):
        with open(filename) as f:
            bif = f.read()
        vars = re.findall(r"variable[^\{]+{[^\}]+}", bif)
        probs = re.findall(r"probability[^\{]+{[^\}]+}", bif)

        var_nodes = {}
        var_index_to_name = []
        edges = []

        self.meta = []
        todo = set()
        for v, p in zip(vars, probs):
            m = re.search(r"variable\s+([^\{\s]+)\s+", v)
            v_name = m.group(1)
            m = re.search(r"type\s+discrete\s+\[\s*(\d+)\s*\]\s*\{([^\}]+)\}",
                          v)
            v_opts_n = int(m.group(1))
            v_opts = m.group(2).replace(',', ' ').split()

            assert v_opts_n == len(v_opts)
            # print(v_name, v_opts_n, v_opts)

            m = re.search(r"probability\s*\(([^)]+)\)", p)
            cond = m.group(1).replace('|', ' ').replace(',', ' ').split()
            assert cond[0] == v_name
            # print(cond)

            self.meta.append({
                "name": v_name,
                "type": "categorical",
                "size": v_opts_n,
                "i2s": v_opts
            })
            if len(cond) == 1:
                m = re.search(r"table([e\-\d\.\s,]*);", p)
                margin_p = m.group(1).replace(',', ' ').split()
                margin_p = [float(x) for x in margin_p]
                assert abs(sum(margin_p) - 1) < 1e-6
                assert len(margin_p) == v_opts_n
                margin_p = dict(zip(v_opts, margin_p))

                var_index_to_name.append(v_name)
                tmp = DiscreteDistribution(margin_p)
                # print(tmp)
                var_nodes[v_name] = tmp
            else:
                m_iter = re.finditer(r"\(([^)]*)\)([\s\d\.,\-e]+);", p)
                cond_p_table = []
                for m in m_iter:
                    cond_values = m.group(1).replace(',', ' ').split()
                    cond_p = m.group(2).replace(',', ' ').split()
                    cond_p = [float(x) for x in cond_p]
                    assert len(cond_values) == len(cond) - 1
                    assert len(cond_p) == v_opts_n
                    assert abs(sum(cond_p) - 1) < 1e-6

                    for opt, opt_p in zip(v_opts, cond_p):
                        cond_p_table.append(cond_values + [opt, opt_p])
                var_index_to_name.append(v_name)

                tmp = (cond_p_table, cond)
                # print(tmp)
                var_nodes[v_name] = tmp
                for x in cond[1:]:
                    edges.append((x, v_name))
                todo.add(v_name)

        while len(todo) > 0:
            # print(todo)
            for v_name in todo:
                # print(v_name, type(var_nodes[v_name]))
                cond_p_table, cond = var_nodes[v_name]
                flag = True
                for y in cond[1:]:
                    if y in todo:
                        flag = False
                        break
                if flag:
                    cond_t = [var_nodes[x] for x in cond[1:]]
                    var_nodes[v_name] = ConditionalProbabilityTable(
                        cond_p_table, cond_t)
                    todo.remove(v_name)
                    break

        for x in var_index_to_name:
            var_nodes[x] = Node(var_nodes[x], name=x)

        var_nodes_list = [var_nodes[x] for x in var_index_to_name]
        # print(var_nodes_list)
        model = BayesianNetwork("tmp")
        model.add_states(*var_nodes_list)

        for edge in edges:
            model.add_edge(var_nodes[edge[0]], var_nodes[edge[1]])
        model.bake()
        # print(model.to_json())
        self.model = model
示例#18
0
from bayes_rule_extraction import print_rules, ordinal_encode
from pomegranate import BayesianNetwork
from sklearn.model_selection import LeaveOneOut
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd

data = pd.read_csv("toy_decision.csv")
names = data.columns
encoded, mapping = ordinal_encode(names, data)

X = encoded[:, 1:]
y = encoded[:, 0]

loo = LeaveOneOut()
clf = BayesianNetwork()

required = [
    tuple([1, 0]),
    tuple([4, 0]),
]

predictions = []

for train_index, test_index in loo.split(X):
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]

    learning_data = np.c_[y_train, X_train]

    model = clf.from_samples(
示例#19
0
    def get_BN(self, n_nodes, n_alters, n_edges):

        # 1 Build BN DAG structure
        DAG, child_parent = RandomDAG().random_dag(n_nodes, n_edges)

        for a, bs in DAG.edge.items():
            for b in bs.keys():
                print(a, "->", b)
        print("Key node, value: parents",child_parent)

        # 2 Build BN probability model
        # 2.1 get probabilityDist or conditional prob table
        node_prob_dict = {}
        # these nodes have parents, generate CPT for them
        for node, parent_lst in child_parent.items():
            # parents + this node condProbTable
            condProbTable = self.getCondProbTable(len(parent_lst)+1, n_alters)
            # save node with its prob
            node_prob_dict[str(node)] = condProbTable
            #print("Conditional Probability Table: \n", condProbTable)

        nodes_list = list(range(n_nodes))
        node_with_parent_lst = child_parent.keys()
        node_without_parents = [e for e in nodes_list if e not in node_with_parent_lst]

        # these nodes have no parents so create random prob for them only no conditional here
        for node in node_without_parents:
            p = np.random.random(n_alters)
            p /= p.sum()
            dist = {}
            for j in range(n_alters):
                dist[j] = p[j]
            # save node with its prob
                node_prob_dict[str(node)] = dist
            #print("Root node: ", node, " dist: ", dist)

        # 2.2 Create nodes linked to its parent, parent should be processed first.
        # all node state saved to be added to the BN later
        nodes_state = {}
        # all node dist or CPT saved to link child to parents when building child CPT
        nodes_dist = {}

        # start with root nodes (don't have parents then link child to them)
        for node in node_without_parents:
            prob_dist = node_prob_dict[str(node)]
            node_dist = DiscreteDistribution(prob_dist)
            nodes_dist[node] = node_dist
            nodes_state[node] = State(node_dist, name = str(node))
            # remove from nodes_list
            nodes_list.remove(node)


        # rest of the node should have parents
        count = 100
        while len(nodes_list) > 0 and count > 0:
            count -= 1
            for node, parent_lst in child_parent.items():
                # if node's parents already created then it can be created now
                if set(parent_lst).issubset(nodes_state.keys()) and node in nodes_list:

                    node_dist = ConditionalProbabilityTable(node_prob_dict[str(node)] \
                                                      , [nodes_dist[i] for i in parent_lst ])
                    nodes_dist[node] = node_dist
                    nodes_state[node] = State(node_dist, name = str(node))
                    # remove from the node_list
                    nodes_list.remove(node)
        if not nodes_list:
            print("States created for all nodes!")

        # 3 Create BN and add the nodes_state
        network = BayesianNetwork("User_pref")
        for node, state in nodes_state.items():
            network.add_node(state)
        print("Network has ", network.node_count() , " nodes")

        # 4 Link nodes with edges using nodes_state and DAG.edge
        for a, bs in DAG.edge.items():
            for b in bs.keys():
                network.add_edge(nodes_state[a], nodes_state[b])
        print("Network has ", network.edge_count(), " edges")
        return network
from pomegranate import DiscreteDistribution
from pomegranate import ConditionalProbabilityTable
from pomegranate import BayesianNetwork
from pomegranate import Node

guest = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
prize = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
monty = ConditionalProbabilityTable(
    [['A', 'A', 'A', 0.0], ['A', 'A', 'B', 0.5], ['A', 'A', 'C', 0.5],
     ['A', 'B', 'A', 0.0], ['A', 'B', 'B', 0.0], ['A', 'B', 'C', 1.0],
     ['A', 'C', 'A', 0.0], ['A', 'C', 'B', 1.0], ['A', 'C', 'C', 0.0],
     ['B', 'A', 'A', 0.0], ['B', 'A', 'B', 0.0], ['B', 'A', 'C', 1.0],
     ['B', 'B', 'A', 0.5], ['B', 'B', 'B', 0.0], ['B', 'B', 'C', 0.5],
     ['B', 'C', 'A', 1.0], ['B', 'C', 'B', 0.0], ['B', 'C', 'C', 0.0],
     ['C', 'A', 'A', 0.0], ['C', 'A', 'B', 1.0], ['C', 'A', 'C', 0.0],
     ['C', 'B', 'A', 1.0], ['C', 'B', 'B', 0.0], ['C', 'B', 'C', 0.0],
     ['C', 'C', 'A', 0.5], ['C', 'C', 'B', 0.5], ['C', 'C', 'C', 0.0]],
    [guest, prize])

s1 = Node(guest, name="guest")
s2 = Node(prize, name="prize")
s3 = Node(monty, name="monty")

model = BayesianNetwork("Monty Hall Problem")
model.add_states(s1, s2, s3)
model.add_edge(s1, s3)
model.add_edge(s2, s3)
model.bake()
示例#21
0
ashwin = ConditionalProbabilityTable(
    returnConditionalProbability(df, 'Location', 'Ashwin'), [location])
batting = ConditionalProbabilityTable(
    returnConditionalProbability(df, 'Toss', 'Bat'), [toss])
result = ConditionalProbabilityTable(
    returnConditionalProbability(df, 'Bat', 'Result'), [batting])

sLocation = State(location, name="Location")
sToss = State(toss, name="Toss")
sBatting = State(batting, name="Batting")
sAshwin = State(ashwin, name="Ashwin")
sResult = State(result, name="Result")

# Create the Bayesian network object with a useful name
model = BayesianNetwork("Ashwin Playing Problem")

# Add the three states to the network
model.add_states(sLocation, sToss, sBatting, sAshwin, sResult)
model.add_edge(sLocation, sAshwin)
model.add_edge(sToss, sBatting)
model.add_edge(sBatting, sResult)
model.bake()

model.predict_proba([None, None, '2nd', 'Y', 'won'])[1]
model.predict_proba([None, None, '2nd', 'N', 'won'])[0]

model.predict_proba([None, None, '2nd', 'Y', 'lost'])[1]

model.predict_proba([None, None, '2nd', 'N', 'lost'])[0]