示例#1
0
def test_distributions_gaussian_kernel_random_sample():
	d = GaussianKernelDensity([0, 4, 3, 5, 7, 4, 2])

	x = numpy.array([5.367586, 2.574708, 2.114238, 2.170925, 4.596907])

	assert_array_almost_equal(d.sample(5, random_state=5), x)
	assert_raises(AssertionError, assert_array_almost_equal, d.sample(5), x)
def test_distributions_gaussian_kernel_random_sample():
	d = GaussianKernelDensity([0, 4, 3, 5, 7, 4, 2])

	x = numpy.array([5.367586, 2.574708, 2.114238, 2.170925, 4.596907])

	assert_array_almost_equal(d.sample(5, random_state=5), x)
	assert_raises(AssertionError, assert_array_almost_equal, d.sample(5), x)
示例#3
0
文件: model-hmm.py 项目: esnmrdi/phd
def plot_histogram(df, feature_name):
    d = GaussianKernelDensity(df[feature_name], bandwidth=2)
    d.plot(
        facecolor="c",
        edgecolor="w",
        bins=50,
        alpha=0.3,
        label="Gaussian Kernel Density",
    )
def test_gaussian_kernel():
    d = GaussianKernelDensity([0, 4, 3, 5, 7, 4, 2])
    assert_equal(round(d.log_probability(3.3), 4), -1.7042)

    d.fit([1, 6, 8, 3, 2, 4, 7, 2])
    assert_equal(round(d.log_probability(1.2), 4), -2.0237)

    d.fit([1, 0, 108], weights=[2., 3., 278.])
    assert_equal(round(d.log_probability(110), 4), -2.9368)
    assert_equal(round(d.log_probability(0), 4), -5.1262)

    d.summarize([1, 6, 8, 3])
    d.summarize([2, 4, 7])
    d.summarize([2])
    d.from_summaries()
    assert_equal(round(d.log_probability(1.2), 4), -2.0237)

    d.summarize([1, 0, 108], weights=[2., 3., 278.])
    d.from_summaries()
    assert_equal(round(d.log_probability(110), 4), -2.9368)
    assert_equal(round(d.log_probability(0), 4), -5.1262)

    d.freeze()
    d.fit([1, 3, 5, 4, 6, 7, 3, 4, 2])
    assert_equal(round(d.log_probability(110), 4), -2.9368)
    assert_equal(round(d.log_probability(0), 4), -5.1262)

    e = Distribution.from_json(d.to_json())
    assert_equal(e.name, "GaussianKernelDensity")
    assert_equal(round(e.log_probability(110), 4), -2.9368)
    assert_equal(round(e.log_probability(0), 4), -5.1262)

    f = pickle.loads(pickle.dumps(e))
    assert_equal(f.name, "GaussianKernelDensity")
    assert_equal(round(f.log_probability(110), 4), -2.9368)
    assert_equal(round(f.log_probability(0), 4), -5.1262)
示例#5
0
axes.legend(loc="best")
fig.tight_layout()
fig.show()
fig.savefig("AE_result_.png", dpi=300)

from pomegranate import NaiveBayes, GaussianKernelDensity
data = np.array(list(mse_const_test) + list(mse_vars))
data = np.log(data)
data = data.reshape(-1, 1)
weights = np.ones(len(data))
weights[-len(mse_vars):] = len(mse_const_test) / float(len(mse_vars))
y = np.zeros(len(data))
y[-len(mse_vars):] = np.ones(len(mse_vars))

clf = NaiveBayes([
    GaussianKernelDensity(bandwidth=0.1),
    GaussianKernelDensity(bandwidth=0.1)
])
clf.fit(data, y, weights=weights)
pred = clf.predict_proba(data)
x = np.array([np.arange(-7, -2, .01)]).T
yy = clf.predict_proba(x)
thresh = 0.5
plt.figure(figsize=(10, 5))
plt.hist(data[pred[:, 0] > thresh],
         color='blue',
         bins=30,
         alpha=0.5,
         normed=True,
         label="Constant unseen")
plt.hist(data[pred[:, 1] > thresh],
示例#6
0
def test_gaussian_kernel():
	d = GaussianKernelDensity([0, 4, 3, 5, 7, 4, 2])
	assert_equal(round(d.log_probability(3.3), 4), -1.7042)

	d.fit([1, 6, 8, 3, 2, 4, 7, 2])
	assert_equal(round(d.log_probability(1.2), 4), -2.0237)

	d.fit([1, 0, 108], weights=[2., 3., 278.])
	assert_equal(round(d.log_probability(110), 4), -2.9368)
	assert_equal(round(d.log_probability(0), 4), -5.1262)

	d.summarize([1, 6, 8, 3])
	d.summarize([2, 4, 7])
	d.summarize([2])
	d.from_summaries()
	assert_equal(round(d.log_probability(1.2), 4), -2.0237)

	d.summarize([1, 0, 108], weights=[2., 3., 278.])
	d.from_summaries()
	assert_equal(round(d.log_probability(110), 4), -2.9368)
	assert_equal(round(d.log_probability(0), 4), -5.1262)

	d.freeze()
	d.fit([1, 3, 5, 4, 6, 7, 3, 4, 2])
	assert_equal(round(d.log_probability(110), 4), -2.9368)
	assert_equal(round(d.log_probability(0), 4), -5.1262)

	e = Distribution.from_json(d.to_json())
	assert_equal(e.name, "GaussianKernelDensity")
	assert_equal(round(e.log_probability(110), 4), -2.9368)
	assert_equal(round(e.log_probability(0), 4), -5.1262)

	f = pickle.loads(pickle.dumps(e))
	assert_equal(f.name, "GaussianKernelDensity")
	assert_equal(round(f.log_probability(110), 4), -2.9368)
	assert_equal(round(f.log_probability(0), 4), -5.1262)