header=0, sep="\t", index_col=0) assert compendium_data.shape[1] == template_data.shape[1] # - # ## Train: VAE training and reproducibility # + # Create VAE directories output_dirs = [ os.path.join(base_dir, dataset_name, "models"), os.path.join(base_dir, dataset_name, "logs"), ] NN_architecture = params["NN_architecture"] for each_dir in output_dirs: new_dir = os.path.join(each_dir, NN_architecture) os.makedirs(new_dir, exist_ok=True) # - # Train VAE on new compendium data train_vae_modules.train_vae(config_filename, normalized_compendium_filename) # Test reproducibility expected_log = "data/test_vae_logs.tsv" actual_log = "logs/NN_2500_30/tybalt_2layer_30latent_stats.tsv" assert pd.read_csv(actual_log, sep="\t")["val_loss"].values[-1] < 15000, pd.read_csv( actual_log, sep="\t")["val_loss"].values[-1]
if os.path.exists(experiment_id_file) == False: utils.create_experiment_id_file(metadata_file, normalized_data_file, experiment_id_file, config_file) # ## Train VAE # In[9]: # Directory containing log information from VAE training vae_log_dir = os.path.join(base_dir, dataset_name, "logs", train_architecture) # In[10]: # Train VAE if len(os.listdir(vae_log_dir)) == 0: train_vae_modules.train_vae(config_file, normalized_data_file) # ## Run simulation experiment without noise correction # In[11]: # Run simulation without correction corrected = False pipeline.run_simulation(config_file, normalized_data_file, corrected, experiment_id_file) # ## Run simulation with correction applied # In[12]: # Run simulation without correction