def overfeat(path=example1): # input = iml.ImageLoader.getOutputNpArray(path, crop=True) layerContainer = [ #3, 224, 224 conv.ConvLayer(padding=1, filtershape=(96, 3, 7, 7), stride_length=2, pool=pool.PoolLayer(pool_size=(3, 3), stride_length=3), ishape=(3, 224, 224)), #96, 36, 36 conv.ConvLayer(padding=1, filtershape=(256, 96, 5, 5), stride_length=1, pool=pool.PoolLayer(pad=1, pool_size=(2, 2), stride_length=2), ishape=(96, 36, 36)), #256, 18, 18 conv.ConvLayer(padding=1, filtershape=(512, 256, 3, 3), stride_length=1, ishape=(256, 18, 18)), #512, 18, 18 conv.ConvLayer(padding=1, filtershape=(512, 512, 3, 3), stride_length=1, ishape=(256, 18, 18)), #512, 18, 18 conv.ConvLayer(padding=1, filtershape=(512, 512, 3, 3), stride_length=1, ishape=(256, 18, 18)), #512, 18, 18 conv.ConvLayer(padding=1, filtershape=(512, 512, 3, 3), stride_length=1, ishape=(256, 18, 18)), #512, 18, 18 conv.ConvLayer(padding=1, filtershape=(512, 512, 3, 3), stride_length=1, ishape=(256, 18, 18)), ] # model.learn() overfeat = model.Model(learning_rate=None, dataset=None, layerContainer=layerContainer) output = overfeat.compute(input) # overfeat.saveLayers(["OVconv1", "OVconv2", "OVconv3", "OVconv4", "OVconv5", "OVconv6", "OVconv7", "OVclassifier"]) overfeat.learn()
def test_learn(): layerContainer = [ #3, 150, 150 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c1", filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)), #32, 74, 74 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c2", filtershape=(64, 32, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(32, 74, 74)), #64, 36, 36 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c3", filtershape=(128, 64, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(64, 36, 36)), #128, 17, 17 fcnetwork.FCLayer(optimizer=adam.AdamFC(), load_path="ff2fcn1", arch=[36992, 512, 128], activation_func="relu", is_classifier=False), softmax.SoftmaxLayer(optimizer=adam.AdamFC(), load_path="ff2softm", arch=[128, 5]) ] # signal.signal(signal.SIGINT, signal_handler) ## here learning rate is useless model_FAndF = model.Model(learning_rate=0.001, dataset=None, layerContainer=layerContainer) pic = iml.ImageLoader.getOutputNpArray(example1, crop=True, crop_size=(0, 0, 150, 150)) y = model_FAndF.compute(pic) print(y)
def simple_adam_optimizer_test(self): train, test_data = dataloader.load_some_flowers(5, 0, crop_size=(0, 0, 150, 150)) x = list(train)[0][0] c1 = conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)) initFilters, initBiases = c1.getFiltersAndBiases() out = c1.compute(x, learn=True) false_delta = numpy.random.randn(*(32, 74, 74)) c1.learn(false_delta) c1.modify_weights(learning_rate=0.1, batch_size=1) finalFilters, finalBiases = c1.getFiltersAndBiases() # print(f"init f {initFilters}") # print(f"final f {finalFilters}") self.assertFalse((initFilters == finalFilters).all()) self.assertFalse((initBiases == finalBiases).all())
def test_bias_gradient1(self): train, test_data = dataloader.load_some_flowers(5, 0, crop_size=(0, 0, 150, 150)) x = list(train)[0][0] c1 = conv.ConvLayer(filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)) out = c1.compute(x, learn=True) self.assertEqual(out.shape, (32, 74, 74)) false_delta = numpy.ones((32, 74, 74)) c1.learn(false_delta) nabla_b = c1.getNablaB() self.assertTrue(nabla_b.shape, (32, ))
def flowerAndFun(path=example1): input = iml.ImageLoader.getOutputNpArray(path, crop=True, crop_size=(0, 0, 150, 150)) layerContainer = [ #3, 150, 150 conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)), #32, 74, 74 conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(64, 32, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(32, 74, 74)), #64, 36, 36 conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(128, 64, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(64, 36, 36)), #128, 17, 17 fcnetwork.FCLayer(optimizer=adam.AdamFC(), arch=[36992, 512, 128, 5]) ] learning_rate = 0.0001 model_FAndF = model.Model(learning_rate=learning_rate, dataset=None, layerContainer=layerContainer) # output = model_FAndF.compute(input, learn=True) # model_FAndF.soft_learn() model_FAndF.test_learn(epoch=50)
def test_max_pool3d_1(self): maxPoolLayer = pool.PoolLayer() input = numpy.arange(start=1, stop=49, step=1).reshape(3, 4, 4) expected_res = numpy.array([[[6, 8], [14, 16]], [[22, 24], [30, 32]], [[38, 40], [46, 48]]]) output = maxPoolLayer.compute(input) self.assertEqual(output.shape, (3, 2, 2)) # print(f"output = {output}") cmp = (output == expected_res) self.assertEqual(cmp.all(), True)
def test_derivative_with_depth3(self): input = numpy.array([[[1, 2, 11, 0.3], [0, 4, 4, 36], [0, 12, 27, 34], [62, 12, 11, 10]], [[11, 58, -1, 2], [1, 36, 12, 8], [27, 0, 64, 1], [1, -1, 4, 3]], [[1, 3, 24, 5], [12, 2, 0, 1], [-1, 2, 3, 11], [12, 27, 18, 2]]]) p = pool.PoolLayer() p.compute(input) expected_res = numpy.array([[[0, 0, 0, 0], [0, 1, 0, 1], [0, 0, 0, 1], [1, 0, 0, 0]], [[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 1, 0], [0, 0, 0, 0]], [[0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 0], [0, 1, 1, 0]]]) res = p.get_derivative() print(res) cmp = (res == expected_res) self.assertEqual(cmp.all(), True)
def test_get_next_delta2(self): # with depth and filter # input = (3, 5, 5) # filter = (4, 3, 2, 2) pathdir = "./tensorfiles" filename1 = "conv_next_delta_test1" input = numpy.array([[[0.1, 2, 0.11, 0.3, 1], [0, 0.4, 0.4, 0.36, 1], [0, 0.12, 0.27, 0.34, -3], [0.62, 0.12, 0.11, 10, 1], [0, 0.56, 0.11, 0.44, 0.23]], [[0.1, 2, 0.11, 0.3, 1], [0, 0.4, 0.4, 0.36, 1], [0, 0.12, 0.27, 0.34, -3], [0.62, 0.12, 0.11, 10, 1], [0, 0.56, 0.11, 0.23, 0.44]], [[0.1, 2, 0.11, 0.3, 1], [0, 0.4, 0.4, 0.36, 1], [0, 0.12, 0.27, 0.34, -3], [0.62, 0.12, 0.11, 10, 1], [0, 0.56, 0.11, 0.23, 0.44]]]) # print(f"input shape = {input.shape}") if not os.path.exists(os.path.join(pathdir, filename1 + ".bs1.npy")): f = numpy.array([[[-0.13, 0.15], [-0.51, 0.62]], [[-0.13, 0.15], [-0.51, 0.62]], [[-0.13, 0.15], [-0.51, 0.62]]]) containerfilter = numpy.ndarray((0, 3, 2, 2)) containerfilter = numpy.insert(containerfilter, 0, f, axis=0) containerfilter = numpy.insert(containerfilter, 0, f, axis=0) containerfilter = numpy.insert(containerfilter, 0, f, axis=0) containerfilter = numpy.insert(containerfilter, 0, f, axis=0) #print(f"container filter shape = {containerfilter.shape}") biases = numpy.zeros((4, )) tm = TensorFileManager("./tensorfiles") # print(f"shape = {f.shape}") tm.save(filename1 + ".bs1", biases) tm.save(filename1 + ".ws1", containerfilter) l1 = conv.ConvLayer(load_path=filename1, filtershape=(4, 3, 2, 2), pool=pool.PoolLayer(), activation_function="sigmoid") res1 = l1.compute(input) # print(f"result conv shape {res1.shape}") ws = numpy.array([[ 0.61, 0.82, 0.96, -1, 0.9, 0.71, 0.3, 0.276, 0.11, 0.12, 0.17, 0.5, 0.1, 0.2, 0.11, 0.6 ], [ 0.02, -0.5, 0.23, 0.17, 0.9, 0.1, 0.4, 0.9, 0.2, 0.12, 0.11, 0.3, 0.1, 0.2, 0.7, 0.8 ]]) prev_delta = numpy.array([0.25, -0.15]) #delta from the link delta = numpy.dot(prev_delta, ws) # print(f"delta = {delta}") l1.learn(delta) dx = l1.getLastDelta() self.assertEqual(dx.shape, (3, 5, 5)) # print(dx) self.assertEqual(numpy.isclose(dx[0][2][2], 2.837872562200001e-10), True)
def test_learn_with_depth_and_multiple_filter(self): # input 3, 5, 5 # filter 3, 3, 2, 2 => output 3, 4, 4 input = numpy.array([[[0.1, 2, 0.11, 0.3, 1], [0, 0.4, 0.4, 0.36, 1], [0, 0.12, 0.27, 0.34, -3], [0.62, 0.12, 0.11, 10, 1], [0, 56, 11, 23, 44]], [[0.11, 0.58, -1, 2, 0.35], [0.1, 0.36, 0.12, 0.8, 0.27], [0.27, 0, 0.64, 1, 0.12], [1, -1, 0.4, 3, 11], [0, 0.56, 0.11, 0.23, 0.44]], [[1, 3, 0.24, 5, -1], [0.12, 2, 0, 1, 11], [-0.1, 0.2, 0.3, 0.11, 0.22], [12, 0.27, 0.18, 0.2, 0.34], [0, 0.56, 0.11, 0.23, 0.44]]]) pathdir = "./tensorfiles" filename = "conv_test_depth_multiple_filter" fullypath = pathdir + "/" + filename if not os.path.exists(os.path.join(pathdir, filename + ".bs1.npy")): tm = TensorFileManager("./tensorfiles") containerfilter = numpy.ndarray((0, 3, 2, 2)) f3 = numpy.array([[[0.3, 0.3], [0.3, 0.3]], [[0.3, 0.3], [0.3, 0.3]], [[0.3, 0.3], [0.3, 0.3]]]) containerfilter = numpy.insert(containerfilter, 0, f3, 0) f2 = numpy.array([[[0.2, 0.2], [0.2, 0.2]], [[0.2, 0.2], [0.2, 0.2]], [[0.2, 0.2], [0.2, 0.2]]]) containerfilter = numpy.insert(containerfilter, 0, f2, 0) f1 = numpy.array([[[0.1, 0.1], [0.1, 0.1]], [[0.1, 0.1], [0.1, 0.1]], [[0.1, 0.1], [0.1, 0.1]]]) containerfilter = numpy.insert(containerfilter, 0, f1, 0) biases = numpy.zeros((3, )) tm.save("conv_test_depth_multiple_filter.bs1", biases) tm.save("conv_test_depth_multiple_filter.ws1", containerfilter) l1 = conv.ConvLayer(load_path=filename, filtershape=(3, 3, 2, 2), pool=pool.PoolLayer(), activation_function="relu") output = l1.compute(input) filename = "fcn_test_depth_multiple_filter" if not os.path.exists(os.path.join(pathdir, filename + ".bs1.npy")): tm = TensorFileManager("./tensorfiles") ws = numpy.array([[ 0.1, 0.3, 0.5, 0.12, 0.9, 0.12, 0.9, 0.10, 0.1, 0.11, 0.12, 0.13 ], [ 0.34, 0.3, 0.64, 0.12, 1, 0.12, 0.1, 0.1, 0.12, 0.13, 0.15, 0.11 ]]) biases = numpy.zeros((2, )) tm.save("fcn_test_depth_multiple_filter.bs1", biases) tm.save("fcn_test_depth_multiple_filter.ws1", ws) l2 = fcnetwork.FCLayer(arch=[12, 2], load_path="fcn_test_depth_multiple_filter") expected_res = numpy.array([1, 0]) l2.compute(input=output, learn=True) l2.learn(expected_res) delta = l2.getLastDelta() l1.learn(delta) nabla_w = l1.getNablaW() self.assertEqual(numpy.isclose(nabla_w[0][0][0][0], 4.1609570961e-09), True) self.assertEqual(numpy.isclose(nabla_w[1][1][0][0], 1.8135273233e-09), True)
input = numpy.array([(0.51, 0.9, 0.88, 0.84, 0.05), (0.4, 0.62, 0.22, 0.59, 0.1), (0.11, 0.2, 0.74, 0.33, 0.14), (0.47, 0.01, 0.85, 0.7, 0.09), (0.76, 0.19, 0.72, 0.17, 0.57)]) filter = numpy.array([[-0.13, 0.15], [-0.51, 0.62]]) biases = numpy.zeros((1, )) if not os.path.exists(os.path.join(pathdir, filename1 + ".bs1.npy")): tm = TensorFileManager("./tensorfiles") tm.save("convtest.bs1", biases) tm.save("convtest.ws1", filter) l1 = conv.ConvLayer(load_path=filename1, pool=pool.PoolLayer()) res1 = l1.compute(input) print(res1) filename2 = "networktest" ############# no need to build a fcn actually ws = numpy.array([[0.61, 0.82, 0.96, -1], [0.02, -0.5, 0.23, 0.17]]) # biases = numpy.zeros((2,)) # if not os.path.exists(os.path.join(pathdir, filename2 + ".bs1.npy")): # tm = TensorFileManager("./tensorfiles") # tm.save("networktest.bs1", biases) # tm.save("networktest.ws1", ws)
def flowerAndFun2(path=example1): def signal_handler(sig, frame): # saveModel.saveLayers(["ff2c1", "ff2c2", "ff2c3", "ff2fcn1", "ff2softm"]) pic = iml.ImageLoader.getOutputNpArray(example1, crop=True, crop_size=(0, 0, 150, 150)) y = saveModel.compute(pic) saveModel.saveLayers([ "ff2c1", "d1", "ff2c2", "d2", "ff2c3", "d3", "ff2fcn1", "d4", "ff2softm" ]) print(y) sys.exit(0) input = iml.ImageLoader.getOutputNpArray(path, crop=True, crop_size=(0, 0, 150, 150)) # layerContainer = [ # #3, 150, 150 # conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)), # dropout.DropoutLayer(p=0.2, ishape=(32, 74, 74)), # #32, 74, 74 # conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(64, 32, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(32, 74, 74)), # dropout.DropoutLayer(p=0.2, ishape=(64, 36, 36)), # #64, 36, 36 # conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(128, 64, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(64, 36, 36)), # dropout.DropoutLayer(p=0.2, ishape=(128, 17, 17)), # #128, 17, 17 # fcnetwork.FCLayer(optimizer=adam.AdamFC(), arch=[36992, 512, 128], activation_func="relu", is_classifier=False), # dropout.DropoutLayer(p=0.2, ishape=(128,)), # softmax.SoftmaxLayer(optimizer=adam.AdamFC(), arch=[128, 5]) # ] # # load net layerContainer = [ #3, 150, 150 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c1", filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)), dropout.DropoutLayer(p=0.2, ishape=(32, 74, 74)), #32, 74, 74 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c2", filtershape=(64, 32, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(32, 74, 74)), dropout.DropoutLayer(p=0.2, ishape=(64, 36, 36)), #64, 36, 36 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c3", filtershape=(128, 64, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(64, 36, 36)), dropout.DropoutLayer(p=0.2, ishape=(128, 17, 17)), #128, 17, 17 fcnetwork.FCLayer(optimizer=adam.AdamFC(), load_path="ff2fcn1", arch=[36992, 512, 128], activation_func="relu", is_classifier=False), dropout.DropoutLayer(p=0.2, ishape=(128, )), softmax.SoftmaxLayer(optimizer=adam.AdamFC(), load_path="ff2softm", arch=[128, 5]) ] signal.signal(signal.SIGINT, signal_handler) ## here learning rate is useless model_FAndF = model.Model(learning_rate=0.001, dataset=None, layerContainer=layerContainer) saveModel = model_FAndF # saveModel.saveLayers(["ff2c1", "ff2c2", "ff2c3", "ff2fcn1", "ff2softm"]) model_FAndF.test_learn(epoch=50)
def flowerAndFunModel(path=example1): #it crops by 224x224 by default print(f"Model load this picture as input: {path}") input = iml.ImageLoader.getOutputNpArray(path, crop=True, crop_size=(0, 0, 150, 150)) dir = "./tensorfiles" if not os.path.exists(dir + "/" + "ff2c1" + ".ws1.npy"): layerContainer = [ #3, 150, 150 conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)), #32, 74, 74 conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(64, 32, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(32, 74, 74)), #64, 36, 36 conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(128, 64, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(64, 36, 36)), #128, 17, 17 fcnetwork.FCLayer(optimizer=adam.AdamFC(), arch=[36992, 512, 128], activation_func="relu", is_classifier=False), softmax.SoftmaxLayer(optimizer=adam.AdamFC(), arch=[128, 5]) ] ffM = model.Model(learning_rate=None, dataset=None, layerContainer=layerContainer) ffM.saveLayers(["ff2c1", "ff2c2", "ff2c3", "ff2fcn1", "ff2softm"]) layerContainer = [ conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c1", filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)), #32, 74, 74 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c2", filtershape=(64, 32, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(32, 74, 74)), #64, 36, 36 conv.ConvLayer(optimizer=adam.AdamConv(), load_path="ff2c3", filtershape=(128, 64, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(64, 36, 36)), #128, 17, 17 fcnetwork.FCLayer(optimizer=adam.AdamFC(), load_path="ff2fcn1", arch=[36992, 512, 128], activation_func="relu", is_classifier=False), softmax.SoftmaxLayer(optimizer=adam.AdamFC(), load_path="ff2softm", arch=[128, 5]) ] ffM = model.Model(learning_rate=None, dataset=None, layerContainer=layerContainer) try: output = ffM.compute(input) except: print("error occured in zf5 model") return "error" return return_response(output) # print(zf5model()) # overfeat() # a = numpy.array( # [[1, 2, 3, 4, 5, 6], # [1, 2, 3, 4, 5, 6], # [1, 2, 3, 4, 5, 6], # [1, 2, 3, 4, 5, 6], # [1, 2, 3, 4, 5, 6], # [1, 2, 3, 4, 5, 6]])
def zf5model(path=example1): # from this architecture: # https://www.researchgate.net/figure/Architecture-of-ZF-model-An-3-channels-image-with-224224-is-as-the-input-It-is_fig5_318577329 # image = iml.ImageLoader.getOutputNpArray(rp_dataset + "daisy/" + "5547758_eea9edfd54_n.jpg", gray=True) # image = iml.ImageLoader.getCropedImage(rp_dataset + "daisy/" + "5547758_eea9edfd54_n.jpg")#.getOutputNpArray(rp_dataset + "daisy/" + "5547758_eea9edfd54_n.jpg") #it crops by 224x224 by default print(f"Model load this picture as input: {path}") input = iml.ImageLoader.getOutputNpArray(path, crop=True, crop_size=(0, 0, 224, 224)) dir = "./tensorfiles" if not os.path.exists(dir + "/" + "conv1" + ".ws1.npy"): layerContainer = [ #3, 224, 224 conv.ConvLayer(padding=1, filtershape=(96, 3, 7, 7), stride_length=2, pool=pool.PoolLayer(pad=1, pool_size=(3, 3), stride_length=2), ishape=(3, 224, 224)), #96, 55, 55 conv.ConvLayer(filtershape=(256, 96, 5, 5), stride_length=2, pool=pool.PoolLayer(pad=1, pool_size=(3, 3), stride_length=2), ishape=(96, 55, 55)), #256, 26, 26 conv.ConvLayer(padding=1, filtershape=(384, 256, 3, 3), stride_length=1, ishape=(256, 26, 26)), #384, 13, 13 conv.ConvLayer(padding=1, filtershape=(384, 384, 3, 3), stride_length=1, ishape=(384, 13, 13)), #384, 13, 13 conv.ConvLayer(padding=1, filtershape=(256, 384, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(3, 3), stride_length=2), ishape=(384, 13, 13)), #do use he initialization here fcnetwork.FCLayer(arch=[9216, 4096, 4096, 5]) ] zf5 = model.Model(learning_rate=None, dataset=None, layerContainer=layerContainer) # output = zf5.compute(input) # print(f"first output = {output}") zf5.saveLayers( ["conv1", "conv2", "conv3", "conv4", "conv5", "classifier"]) layerContainer = [ #3, 224, 224 conv.ConvLayer(load_path="conv1"), #96, 55, 55 conv.ConvLayer(load_path="conv2"), #256, 26, 26 conv.ConvLayer(load_path="conv3"), #384, 13, 13 conv.ConvLayer(load_path="conv4"), #384, 13, 13 conv.ConvLayer(load_path="conv5"), #do use he initialization here fcnetwork.FCLayer(arch=[9216, 4096, 4096, 5], load_path="classifier") ] zf5 = model.Model(learning_rate=None, dataset=None, layerContainer=layerContainer) # output = zf5.compute(input) # res = zf5.learn() # print(f"snd output = {res}") try: output = zf5.compute(input) except: print("error occured in zf5 model") return "error" # print(return_response(output)) return return_response(output)
def load(self, file): with open(file, 'rb') as f: self.__layers = pickle.load(f) if __name__ == '__main__': import numpy as np import conv import act import pool import dense # build net = Network() net.add_layer(conv.ConvLayer(28, 28, 1, 3, 10)) net.add_layer(act.ReLULayer()) net.add_layer(pool.PoolLayer(f=2, stride=2)) net.add_layer(act.ReLULayer()) net.add_layer(conv.ConvLayer(13, 13, 10, 4, 16)) net.add_layer(act.ReLULayer()) net.add_layer(pool.PoolLayer(f=2, stride=2)) net.add_layer(act.ReLULayer()) net.add_layer(conv.ConvLayer(5, 5, 16, 2, 10)) net.add_layer(act.ReLULayer()) net.add_layer(pool.PoolLayer(f=4, stride=1)) net.add_layer(dense.DenseLayer(10, 10)) net.add_layer(act.SigmoidLayer()) # train i = np.random.randn(1, 28, 28, 1) o = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0]).reshape(10, 1) net.train(i, o, 100, 0.1) print(np.argmax(net.forward(i)) + 1)
# image = iml.ImageLoader.getOutputNpArray(rp_dataset + "daisy/" + "5547758_eea9edfd54_n.jpg", gray=True) # image = iml.ImageLoader.getCropedImage(rp_dataset + "daisy/" + "5547758_eea9edfd54_n.jpg")#.getOutputNpArray(rp_dataset + "daisy/" + "5547758_eea9edfd54_n.jpg") input = iml.ImageLoader.getOutputNpArray(image_path=rp_dataset + "daisy/" + "5547758_eea9edfd54_n.jpg", crop=True) # from this architecture: # https://www.researchgate.net/figure/Architecture-of-ZF-model-An-3-channels-image-with-224224-is-as-the-input-It-is_fig5_318577329 layerContainer = [ conv.ConvLayer(padding=1, filtershape=(96, 3, 7, 7), stride_length=2, pool=pool.PoolLayer(pad=1, pool_size=(3, 3), stride_length=2)), conv.ConvLayer(filtershape=(256, 96, 5, 5), stride_length=2, pool=pool.PoolLayer(pad=1, pool_size=(3, 3), stride_length=2)), conv.ConvLayer(padding=1, filtershape=(384, 256, 3, 3), stride_length=1), conv.ConvLayer(padding=1, filtershape=(384, 384, 3, 3), stride_length=1), conv.ConvLayer(padding=1, filtershape=(256, 384, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(3, 3), stride_length=2)), fcnetwork.FCLayer(arch=[9216, 4096, 5]) ]