image = read_image(imgs[i], normalise=True) image = resize_image(centre_crop(image), args.size) # Compute the saliency map grad = localiser.saliency(image) grad = median(grad, disk(3)) if args.scale: grad = np.clip(1.0 * grad / args.scale, 0, 1) else: grad = 1.0 * grad / np.max(grad) if args.red: grad = np.stack([ np.ones(grad.shape), np.zeros(grad.shape), np.zeros(grad.shape), grad ], axis=2) if args.output: fname = os.path.join(args.output, os.path.basename(imgs[i])) scipy.misc.toimage(grad, cmin=0, cmax=1).save(fname) progress_bar(1.0 * (i + 1) / n_images, 30, text='Computing') else: # Display image plt.imshow(grad, cmap='gray') plt.show() if n_images > 1: print('')
[train_loss]+train_summaries, feed_dict={x: train_images_feed, y: train_labels_feed}) for res in results[1:]: summary_writer.add_summary(res, i) if args.verbose: print('{} (training): Loss = {:.6f}'.format(i, results[0])) if args.validate and (i % n_disp_validation == 0): val_images_feed, val_labels_feed = validation_reader.next_batch() results = sess.run( [validation_loss]+validation_summaries, feed_dict={x: val_images_feed, y: val_labels_feed}) for res in results[1:]: summary_writer.add_summary(res, i) if args.verbose: print('{} (validation): Loss = {:.6f}'.format(i, results[0])) if not args.verbose: progress_bar(1.0*(i+1-args.iter_start)/args.n_iters, 30, text='Training', epilog='iter {}'.format(i)) if i+1 in args.save_iters: save_path = os.path.join(args.save_dir, args.name + '_iter{}.ckpt'.format(i+1)) saver.save(sess, save_path) print('') # Save the model save_path = os.path.join(args.save_dir, args.name + '.ckpt') saver.save(sess, save_path) print("Final model saved in file: %s" % save_path)
with Localiser(args.model, uncertainty=args.uncertainty) as localiser: for i in range(n_images): images_feed, labels_feed = test_reader.next_batch() # Make prediction predicted = localiser.localise(images_feed) positions = np.concatenate( (positions, np.asarray([predicted['x']]))) orientations = np.concatenate( (orientations, np.asarray([predicted['q']]))) if args.uncertainty: std_x.append(predicted['std_x']) std_q.append(predicted['std_q']) progress_bar(1.0 * (i + 1) / n_images, 30, text='Localising') print('') else: positions = positions_gt orientations = orientations_gt def draw_segment(start, end, color='black', lw=1): plt.plot([start[0], end[0]], [start[1], end[1]], [start[2], end[2]], linestyle='-', color=color, lw=lw) def draw_sphere(pos, r, color='black', lw=1): u = np.linspace(0, 2 * np.pi, 100)