def get_data(input_txt_file, input_image_dir, mean_image, beaconmap, mean_beacon, use_fixed_input_mean_std): image_filenames = [] poses = [] images = [] beacons = [] with open(input_txt_file) as f: # skip header next(f) next(f) next(f) for line in f: fname, beaconstr, p0, p1, p2, p3, p4, p5, p6 = line.split() quat = posenet_geom_utils.preprocess_quaternion( [float(p3), float(p4), float(p5), float(p6)]) p0 = float(p0) p1 = float(p1) p2 = float(p2) p3 = quat[0] p4 = quat[1] p5 = quat[2] p6 = quat[3] poses.append((p0, p1, p2, p3, p4, p5, p6)) image_filenames.append(os.path.join(input_image_dir, fname)) beacon = posenet_beacon_utils.parse_beacon_string( beaconstr, beaconmap) beacons.append(beacon) beacons = posenet_beacon_utils.preprocess_test_beacons( beacons, mean_beacon, use_fixed_input_mean_std) return datasource(image_filenames, beacons, poses), image_filenames
def get_data(input_txt_file, input_image_dir): image_filenames = [] poses = [] with open(input_txt_file) as f: # skip header next(f) next(f) next(f) for line in f: fname, p0, p1, p2, p3, p4, p5, p6 = line.split() quat = posenet_geom_utils.preprocess_quaternion( [float(p3), float(p4), float(p5), float(p6)]) p0 = float(p0) p1 = float(p1) p2 = float(p2) p3 = quat[0] p4 = quat[1] p5 = quat[2] p6 = quat[3] poses.append((p0, p1, p2, p3, p4, p5, p6)) image_filenames.append(os.path.join(input_image_dir, fname)) return datasource(image_filenames, poses), image_filenames
def get_beacon_data(input_txt_file, beaconmap, beacon_num, use_fixed_input_mean_std, use_augmentation_beacon): poses_index = [] beacons_index = [] poses_data = [] beacons_data = [] with open(input_txt_file) as f: # skip header next(f) next(f) next(f) for line in f: beaconstr, p0, p1, p2, p3, p4, p5, p6 = line.split() quat = posenet_geom_utils.preprocess_quaternion( [float(p3), float(p4), float(p5), float(p6)]) p0 = float(p0) p1 = float(p1) p2 = float(p2) p3 = quat[0] p4 = quat[1] p5 = quat[2] p6 = quat[3] poses_data.append((p0, p1, p2, p3, p4, p5, p6)) poses_index.append(len(poses_data) - 1) beacon = posenet_beacon_utils.parse_beacon_string( beaconstr, beaconmap) beacons_data.append(beacon) beacons_index.append(len(beacons_data) - 1) if use_augmentation_beacon: nonzero_idxs = np.nonzero(beacon)[0] num_augment_beacon = int( math.ceil( len(nonzero_idxs) * posenet_config.ratio_beacon_augmentation)) for idx in range(0, posenet_config.num_beacon_augmentation): poses_index.append(len(poses_data) - 1) augment_beacon = np.copy(beacon) for idx_augment in range(0, num_augment_beacon): random_idx = int( np.random.uniform(0.0, 1.0) * (len(nonzero_idxs) - 1)) augment_beacon_idx = nonzero_idxs[random_idx] augment_beacon[augment_beacon_idx][0][0] = math.floor( augment_beacon[augment_beacon_idx][0][0] * np.random.uniform(0.0, 1.0)) beacons_data.append(augment_beacon) beacons_index.append(len(beacons_data) - 1) beacons_data, mean_beacon = posenet_beacon_utils.preprocess_beacons( beacons_data, beacon_num, use_fixed_input_mean_std) return beacon_datasource(beacons_index, poses_index, beacons_data, poses_data), mean_beacon
def get_image_data(input_txt_file, input_image_dir, use_fixed_input_mean_std, image_size=224): poses_index = [] images_index = [] poses_data = [] images_data = [] with open(input_txt_file) as f: # skip header next(f) next(f) next(f) for line in f: fname, p0, p1, p2, p3, p4, p5, p6 = line.split() quat = posenet_geom_utils.preprocess_quaternion( [float(p3), float(p4), float(p5), float(p6)]) p0 = float(p0) p1 = float(p1) p2 = float(p2) p3 = quat[0] p4 = quat[1] p5 = quat[2] p6 = quat[3] poses_data.append((p0, p1, p2, p3, p4, p5, p6)) poses_index.append(len(poses_data) - 1) images_data.append(os.path.join(input_image_dir, fname)) images_index.append(len(images_data) - 1) images_data, mean_image = posenet_image_utils.preprocess( images_data, use_fixed_input_mean_std, image_size=image_size) return image_datasource(images_index, poses_index, images_data, poses_data), mean_image