# to do: define fld_slice # Animation 1: nfig += 1 f_title = r'' x_lab = [r'$\alpha$',r'',r''] y_lab = [r'',r'',r''] z_lab = [r'',r'$\delta\phi$',r'$\chi$'] fig = plt.figure() ax0 = fig.add_axes([0.075,0.75,0.2,0.2]) ax1 = Axes3D(fig, rect=(0.3,0.5,0.65,0.5), azim=azim, elev=elev, proj_type='ortho') ax2 = Axes3D(fig, rect=(0.3,0,0.65,0.5), azim=azim, elev=elev, proj_type='ortho') fld_slice = [ax0,ax1,ax2] fig_n = 'fld_slice_anim' + str(nfig) + run_ident[0] + '.mp4' ax0.plot(np.log(en[:,a_i]), pot.V(en[:,phi_i], pot.chi_min(en[:,phi_i]))/pot.V_0(en[:,phi_i],en[:,0]), ls=':', c='k', label=r'$V_{\mathrm{min}}|_{\langle \phi \rangle}/V_0$') ax0.plot(np.log(en[:,a_i]), en[:,rhoP_i]/pot.V_0(en[:,phi_i],en[:,0]), ls='-.', c='k', label=r'$V/V_0$') ylim = ax0.get_ylim() line = ax0.plot([np.log(en[0,a_i]),np.log(en[0,a_i])], ylim ,ls='-', c='g', lw=1) ax0.set_ylim(ylim) # to do: set titles and labels # to do: set figure size def init_anim1(): fig.suptitle(f_title) for i in range(0,len(fld_slice)): fld_slice[i].set_xlabel(x_lab[i]) fld_slice[i].set_ylabel(y_lab[i]) for i in range(1,len(fld_slice)): fld_slice[i].set_zlabel(z_lab[i]) #for axis in fld_slice:
en[i, :, rhoG_i] / en[i, :, rho_i], ls='-', c='r', label=r'Gradient') ax.plot(np.log(en[i, :, a_i]), en[i, :, rhoP_i] / en[i, :, rho_i], ls='-', c='b', label=r'Potential') ax.plot(np.log(en[i, :, a_i]), en[i, :, rhoP_i] / pot.V_0(en[i, :, phi_i], en[i, :, chi_i]), ls='-.', c='g', label=r'$V/V_0$') ax.plot(np.log(en[i, :, a_i]), pot.V(en[i, :, phi_i], pot.chi_min(en[i, :, phi_i])) / pot.V_0(en[i, :, phi_i], en[i, :, chi_i]), ls='..', c='g', label=r'$V_{\mathrm{min}}|_{\langle \phi \rangle}/V_0$') ylim = ax.get_ylim() ax.plot([np.log(en[0, dv_i[0], a_i]), np.log(en[0, dv_i[0], a_i])], ylim, ls='-', c='g', lw=0.5) ax.plot([np.log(en[0, dv_i[1], a_i]), np.log(en[0, dv_i[1], a_i])], ylim, ls='-',
import potential as pot import numpy as np import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') pot = pot.Potential('quadratic') if (pot.phimin() == 0.0): print("Test Phimin Okay") else: print("Test phimin Failed") #throw TestFail exception plot_phi = np.linspace(-3.0, 3.0, 10000) plt.xlabel('$\phi$') plt.ylabel('$V(\phi)$') plt.plot(plot_phi, pot.V(plot_phi), 'r') plt.savefig('test_V_plot.png', dpi=150) plt.close() plt.xlabel('$\phi$') plt.ylabel('$V(\phi)$') plt.plot(plot_phi, pot.Vdd(plot_phi), 'r') plt.savefig('test_Vdd_plot.png', dpi=150) plt.close()
# Save/show figs SAVE_FIGS = False SHOW_FIGS = True # Set potential parameters pot.init_param(phi_p, phi_w, m2_p, lambda_chi_in=lambda_chi, POTOPT_in=POTOPT) # Set field limits n_pts = 2**8 f1_lim = [phi_p + 1.25 * phi_w, phi_p - 1.25 * phi_w] f2_lim = [-1.25 * pot.chi_min(phi_p), 1.25 * pot.chi_min(phi_p)] f1 = np.linspace(f1_lim[0], f1_lim[1], n_pts) f2 = np.linspace(f2_lim[0], f2_lim[1], n_pts) X, Y = np.meshgrid(f1, f2) v = pot.V(X, Y) #pot.V_int(X,Y)+pot.V_0_chi(X,Y)# clip_lim = pot.V(X, 0, baseline=True) + pot.V_0_chi(0, 1. * pot.chi_min(phi_p)) v_clip = np.where(v <= clip_lim, v, np.nan) # Plot nfig = 0 # Point of view elev = 45. azim = 135. dist = 10. # Plot 1: Plot of m^2_{eff}(\phi) along side surface plot of V(\phi,\chi) nfig += 1 fig_n = 'potential_plt' + str(nfig) + '_' + str(POTOPT) + '_' + '.png' x_lab = [r'$\phi-\phi_p$', r'$\phi-\phi_p$']