示例#1
0
 def __init__(
         self,
         dataset=CocoDataSet().__dict__,
         fields=['image', 'gt_box', 'gt_label', 'gt_score'],
         image_shape=[3, 608, 608],
         sample_transforms=[
             DecodeImage(to_rgb=True, with_mixup=True),
             MixupImage(alpha=1.5, beta=1.5),
             NormalizeBox(),
             RandomDistort(),
             ExpandImage(max_ratio=4.,
                         prob=.5,
                         mean=[123.675, 116.28, 103.53]),
             CropImage([[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
                        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1,
                         1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
                        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5,
                         1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
                        [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9,
                         1.0], [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]),
             RandomInterpImage(target_size=608),
             RandomFlipImage(is_normalized=True),
             NormalizeImage(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225],
                            is_scale=True,
                            is_channel_first=False),
             Permute(to_bgr=False),
         ],
         batch_transforms=[
             RandomShape(
                 sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608])
         ],
         batch_size=8,
         shuffle=True,
         samples=-1,
         drop_last=True,
         with_background=False,
         num_workers=8,
         bufsize=128,
         use_process=True,
         num_max_boxes=50,
         mixup_epoch=250):
     sample_transforms.append(ArrangeYOLO())
     super(YoloTrainFeed, self).__init__(dataset,
                                         fields,
                                         image_shape,
                                         sample_transforms,
                                         batch_transforms,
                                         batch_size=batch_size,
                                         shuffle=shuffle,
                                         samples=samples,
                                         drop_last=drop_last,
                                         with_background=with_background,
                                         num_workers=num_workers,
                                         bufsize=bufsize,
                                         use_process=use_process)
     self.num_max_boxes = num_max_boxes
     self.mixup_epoch = mixup_epoch
     self.mode = 'TRAIN'
示例#2
0
 def __init__(self,
              dataset=VocDataSet().__dict__,
              fields=['image', 'gt_box', 'gt_label'],
              image_shape=[3, 300, 300],
              sample_transforms=[
                  DecodeImage(to_rgb=True, with_mixup=False),
                  NormalizeBox(),
                  RandomDistort(brightness_lower=0.875,
                                brightness_upper=1.125,
                                is_order=True),
                  ExpandImage(max_ratio=4, prob=0.5),
                  CropImage(batch_sampler=[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
                             [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0],
                             [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0],
                             [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0],
                             [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0],
                             [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0],
                             [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]],
                            satisfy_all=False, avoid_no_bbox=False),
                  ResizeImage(target_size=300, use_cv2=False, interp=1),
                  RandomFlipImage(is_normalized=True),
                  Permute(),
                  NormalizeImage(mean=[127.5, 127.5, 127.5],
                                 std=[127.502231, 127.502231, 127.502231],
                                 is_scale=False)
              ],
              batch_transforms=[],
              batch_size=32,
              shuffle=True,
              samples=-1,
              drop_last=True,
              num_workers=8,
              bufsize=10,
              use_process=True,
              memsize=None):
     sample_transforms.append(ArrangeSSD())
     super(SSDTrainFeed, self).__init__(
         dataset,
         fields,
         image_shape,
         sample_transforms,
         batch_transforms,
         batch_size=batch_size,
         shuffle=shuffle,
         samples=samples,
         drop_last=drop_last,
         num_workers=num_workers,
         bufsize=bufsize,
         use_process=use_process,
         memsize=None)
     self.mode = 'TRAIN'