def main(): cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture dataset = cfg.TestReader['dataset'] test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img) dataset.set_images(test_images) place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['iterable'] = True feed_vars, loader = model.build_inputs(**inputs_def) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) reader = create_reader(cfg.TestReader, devices_num=1) loader.set_sample_list_generator(reader, place) exe.run(startup_prog) if cfg.weights: checkpoint.load_params(exe, infer_prog, cfg.weights) # parse infer fetches assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg['metric'] in ['COCO', 'OID']: extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE': extra_keys = ['im_id', 'im_shape'] keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys) # parse dataset category if cfg.metric == 'COCO': from ppdet.utils.coco_eval import bbox2out, mask2out, segm2out, get_category_info if cfg.metric == 'OID': from ppdet.utils.oid_eval import bbox2out, get_category_info if cfg.metric == "VOC": from ppdet.utils.voc_eval import bbox2out, get_category_info if cfg.metric == "WIDERFACE": from ppdet.utils.widerface_eval_utils import bbox2out, lmk2out, get_category_info anno_file = dataset.get_anno() with_background = dataset.with_background use_default_label = dataset.use_default_label clsid2catid, catid2name = get_category_info(anno_file, with_background, use_default_label) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # use VisualDL to log image if FLAGS.use_vdl: assert six.PY3, "VisualDL requires Python >= 3.5" from visualdl import LogWriter vdl_writer = LogWriter(FLAGS.vdl_log_dir) vdl_image_step = 0 vdl_image_frame = 0 # each frame can display ten pictures at most. imid2path = dataset.get_imid2path() resultBBox = [] for iter_id, data in enumerate(loader()): outs = exe.run(infer_prog, feed=data, fetch_list=values, return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(keys, outs) } logger.info('Infer iter {}'.format(iter_id)) if 'TTFNet' in cfg.architecture: res['bbox'][1].append([len(res['bbox'][0])]) if 'CornerNet' in cfg.architecture: from ppdet.utils.post_process import corner_post_process post_config = getattr(cfg, 'PostProcess', None) corner_post_process(res, post_config, cfg.num_classes) bbox_results = None mask_results = None segm_results = None lmk_results = None if 'bbox' in res: bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized) if 'mask' in res: mask_results = mask2out([res], clsid2catid, model.mask_head.resolution) if 'segm' in res: segm_results = segm2out([res], clsid2catid) if 'landmark' in res: lmk_results = lmk2out([res], is_bbox_normalized) # bbox 四个值:左上角坐标 + 宽度 + 高度 # {'image_id': 0, 'category_id': 0, 'bbox': [695.04443359375, 723.8153686523438, 128.288818359375, 61.5987548828125], 'score': 0.9990022778511047} im_ids = res['im_id'][0] image_path = imid2path[int(im_ids[0])] prefix = image_path.split('/')[-1] imageName = prefix.split('.')[0] for i, result in enumerate(bbox_results): score = result["score"] bbox = result["bbox"] x1 = str(int(bbox[0])) y1 = str(int(bbox[1])) x2 = str(int(bbox[2] + bbox[0])) y2 = str(int(bbox[3] + bbox[1])) if (score > 0.01): resStr = imageName + ' ' + str(round( score, 3)) + ' ' + x1 + ' ' + y1 + ' ' + x2 + ' ' + y2 + '\n' resultBBox.append(resStr) # visualize result for im_id in im_ids: image_path = imid2path[int(im_id)] image = Image.open(image_path).convert('RGB') image = ImageOps.exif_transpose(image) # use VisualDL to log original image if FLAGS.use_vdl: original_image_np = np.array(image) vdl_writer.add_image( "original/frame_{}".format(vdl_image_frame), original_image_np, vdl_image_step) image = visualize_results(image, int(im_id), catid2name, FLAGS.draw_threshold, bbox_results, mask_results, segm_results, lmk_results) # use VisualDL to log image with bbox if FLAGS.use_vdl: infer_image_np = np.array(image) vdl_writer.add_image("bbox/frame_{}".format(vdl_image_frame), infer_image_np, vdl_image_step) vdl_image_step += 1 if vdl_image_step % 10 == 0: vdl_image_step = 0 vdl_image_frame += 1 save_name = get_save_image_name(FLAGS.output_dir, image_path) logger.info("Detection bbox results save in {}".format(save_name)) image.save(save_name, quality=95) resulttxtPath = "/home/aistudio/work/PaddleDetection-release-2.0-beta/output/test_result.txt" f = open(resulttxtPath, 'w+', encoding='utf-8') for i, p in enumerate(resultBBox): f.write(p) f.close()
def main(): cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # disable npu in config by default and check use_npu if 'use_npu' not in cfg: cfg.use_npu = False check_npu(cfg.use_npu) # disable xpu in config by default and check use_xpu if 'use_xpu' not in cfg: cfg.use_xpu = False check_xpu(cfg.use_xpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture dataset = cfg.TestReader['dataset'] test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img) dataset.set_images(test_images) if cfg.use_gpu: place = fluid.CUDAPlace(0) elif cfg.use_npu: place = fluid.NPUPlace(0) elif cfg.use_xpu: place = fluid.XPUPlace(0) else: place = fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['iterable'] = True feed_vars, loader = model.build_inputs(**inputs_def) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) reader = create_reader(cfg.TestReader, devices_num=1) loader.set_sample_list_generator(reader, place) exe.run(startup_prog) if cfg.weights: checkpoint.load_params(exe, infer_prog, cfg.weights) # parse infer fetches assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg['metric'] in ['COCO', 'OID']: extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE': extra_keys = ['im_id', 'im_shape'] keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys) # parse dataset category if cfg.metric == 'COCO': from ppdet.utils.coco_eval import bbox2out, mask2out, segm2out, get_category_info if cfg.metric == 'OID': from ppdet.utils.oid_eval import bbox2out, get_category_info if cfg.metric == "VOC": from ppdet.utils.voc_eval import bbox2out, get_category_info if cfg.metric == "WIDERFACE": from ppdet.utils.widerface_eval_utils import bbox2out, lmk2out, get_category_info anno_file = dataset.get_anno() with_background = dataset.with_background use_default_label = dataset.use_default_label clsid2catid, catid2name = get_category_info(anno_file, with_background, use_default_label) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # use VisualDL to log image if FLAGS.use_vdl: assert six.PY3, "VisualDL requires Python >= 3.5" from visualdl import LogWriter vdl_writer = LogWriter(FLAGS.vdl_log_dir) vdl_image_step = 0 vdl_image_frame = 0 # each frame can display ten pictures at most. imid2path = dataset.get_imid2path() for iter_id, data in enumerate(loader()): outs = exe.run(infer_prog, feed=data, fetch_list=values, return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(keys, outs) } logger.info('Infer iter {}'.format(iter_id)) if 'TTFNet' in cfg.architecture: res['bbox'][1].append([len(res['bbox'][0])]) if 'CornerNet' in cfg.architecture: from ppdet.utils.post_process import corner_post_process post_config = getattr(cfg, 'PostProcess', None) corner_post_process(res, post_config, cfg.num_classes) bbox_results = None mask_results = None segm_results = None lmk_results = None if 'bbox' in res: bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized) if 'mask' in res: mask_results = mask2out([res], clsid2catid, model.mask_head.resolution) if 'segm' in res: segm_results = segm2out([res], clsid2catid) if 'landmark' in res: lmk_results = lmk2out([res], is_bbox_normalized) # visualize result im_ids = res['im_id'][0] for im_id in im_ids: image_path = imid2path[int(im_id)] image = Image.open(image_path).convert('RGB') image = ImageOps.exif_transpose(image) # use VisualDL to log original image if FLAGS.use_vdl: original_image_np = np.array(image) vdl_writer.add_image( "original/frame_{}".format(vdl_image_frame), original_image_np, vdl_image_step) image = visualize_results(image, int(im_id), catid2name, FLAGS.draw_threshold, bbox_results, mask_results, segm_results, lmk_results) # use VisualDL to log image with bbox if FLAGS.use_vdl: infer_image_np = np.array(image) vdl_writer.add_image("bbox/frame_{}".format(vdl_image_frame), infer_image_np, vdl_image_step) vdl_image_step += 1 if vdl_image_step % 10 == 0: vdl_image_step = 0 vdl_image_frame += 1 save_name = get_save_image_name(FLAGS.output_dir, image_path) logger.info("Detection bbox results save in {}".format(save_name)) image.save(save_name, quality=95)