示例#1
0
def run(FLAGS, cfg, place):

    # Model
    main_arch = cfg.architecture
    model = create(cfg.architecture)

    # Init Model
    load_weight(model, cfg.weights)

    # Data Reader
    dataset = cfg.EvalDataset
    eval_loader, _ = create('EvalReader')(dataset, cfg['worker_num'], place)

    # Run Eval
    outs_res = []
    start_time = time.time()
    sample_num = 0
    for iter_id, data in enumerate(eval_loader):
        # forward
        model.eval()
        outs = model(data, cfg['EvalReader']['inputs_def']['fields'], 'infer')
        outs_res.append(outs)

        # log
        sample_num += len(data)
        if iter_id % 100 == 0:
            logger.info("Eval iter: {}".format(iter_id))

    cost_time = time.time() - start_time
    logger.info('Total sample number: {}, averge FPS: {}'.format(
        sample_num, sample_num / cost_time))

    eval_type = ['bbox']
    if getattr(cfg, 'MaskHead', None):
        eval_type.append('mask')
    # Metric
    # TODO: support other metric
    from ppdet.utils.coco_eval import get_category_info
    anno_file = dataset.get_anno()
    with_background = cfg.with_background
    use_default_label = dataset.use_default_label
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    infer_res = get_infer_results(outs_res, eval_type, clsid2catid)
    eval_results(infer_res, cfg.metric, anno_file)
示例#2
0
def run(FLAGS, cfg, place):

    # Model
    main_arch = cfg.architecture
    model = create(cfg.architecture)

    # data
    dataset = cfg.TestDataset
    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    dataset.set_images(test_images)
    test_loader = create('TestReader')(dataset, cfg['worker_num'])
    extra_key = ['im_shape', 'scale_factor', 'im_id']

    # TODO: support other metrics
    imid2path = dataset.get_imid2path()

    anno_file = dataset.get_anno()
    with_background = cfg.with_background
    use_default_label = dataset.use_default_label

    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import get_category_info
    if cfg.metric == 'VOC':
        from ppdet.utils.voc_eval import get_category_info
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    # Init Model
    load_weight(model, cfg.weights)

    # Run Infer
    for iter_id, data in enumerate(test_loader):
        # forward
        model.eval()
        outs = model(data)
        for key in extra_key:
            outs[key] = data[key]
        for key, value in outs.items():
            outs[key] = value.numpy()

        if 'mask' in outs and 'bbox' in outs:
            mask_resolution = model.mask_post_process.mask_resolution
            from ppdet.py_op.post_process import mask_post_process
            outs['mask'] = mask_post_process(outs, outs['im_shape'],
                                             outs['scale_factor'],
                                             mask_resolution)

        eval_type = []
        if 'bbox' in outs:
            eval_type.append('bbox')
        if 'mask' in outs:
            eval_type.append('mask')

        batch_res = get_infer_results([outs], eval_type, clsid2catid)
        logger.info('Infer iter {}'.format(iter_id))
        bbox_res = None
        mask_res = None

        bbox_num = outs['bbox_num']
        start = 0
        for i, im_id in enumerate(outs['im_id']):
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')
            end = start + bbox_num[i]

            # use VisualDL to log original image
            if FLAGS.use_vdl:
                original_image_np = np.array(image)
                vdl_writer.add_image(
                    "original/frame_{}".format(vdl_image_frame),
                    original_image_np, vdl_image_step)

            if 'bbox' in batch_res:
                bbox_res = batch_res['bbox'][start:end]
            if 'mask' in batch_res:
                mask_res = batch_res['mask'][start:end]

            image = visualize_results(image, bbox_res, mask_res,
                                      int(outs['im_id']), catid2name,
                                      FLAGS.draw_threshold)

            # use VisualDL to log image with bbox
            if FLAGS.use_vdl:
                infer_image_np = np.array(image)
                vdl_writer.add_image("bbox/frame_{}".format(vdl_image_frame),
                                     infer_image_np, vdl_image_step)
                vdl_image_step += 1
                if vdl_image_step % 10 == 0:
                    vdl_image_step = 0
                    vdl_image_frame += 1

            # save image with detection
            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
            image.save(save_name, quality=95)
            start = end
示例#3
0
def run(FLAGS, cfg, place):

    # Model
    main_arch = cfg.architecture
    model = create(cfg.architecture)

    # data
    dataset = cfg.TestDataset
    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    dataset.set_images(test_images)
    test_loader, _ = create('TestReader')(dataset, cfg['worker_num'], place)

    # TODO: support other metrics
    imid2path = dataset.get_imid2path()

    from ppdet.utils.coco_eval import get_category_info
    anno_file = dataset.get_anno()
    with_background = cfg.with_background
    use_default_label = dataset.use_default_label
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    # Init Model
    load_weight(model, cfg.weights)

    # Run Infer
    for iter_id, data in enumerate(test_loader):
        # forward
        model.eval()
        outs = model(data, cfg.TestReader['inputs_def']['fields'], 'infer')

        batch_res = get_infer_results([outs], outs.keys(), clsid2catid)
        logger.info('Infer iter {}'.format(iter_id))
        bbox_res = None
        mask_res = None

        im_ids = outs['im_id']
        bbox_num = outs['bbox_num']
        start = 0
        for i, im_id in enumerate(im_ids):
            im_id = im_ids[i]
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')
            end = start + bbox_num[i]

            # use VisualDL to log original image
            if FLAGS.use_vdl:
                original_image_np = np.array(image)
                vdl_writer.add_image(
                    "original/frame_{}".format(vdl_image_frame),
                    original_image_np, vdl_image_step)

            if 'bbox' in batch_res:
                bbox_res = batch_res['bbox'][start:end]
            if 'mask' in batch_res:
                mask_res = batch_res['mask'][start:end]

            image = visualize_results(image, bbox_res, mask_res, int(im_id),
                                      catid2name, FLAGS.draw_threshold)

            # use VisualDL to log image with bbox
            if FLAGS.use_vdl:
                infer_image_np = np.array(image)
                vdl_writer.add_image("bbox/frame_{}".format(vdl_image_frame),
                                     infer_image_np, vdl_image_step)
                vdl_image_step += 1
                if vdl_image_step % 10 == 0:
                    vdl_image_step = 0
                    vdl_image_frame += 1

            # save image with detection
            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
            image.save(save_name, quality=95)
            start = end
def run(FLAGS, cfg, place):

    # Model
    main_arch = cfg.architecture
    model = create(cfg.architecture)

    # Init Model
    load_weight(model, cfg.weights)

    # Data Reader
    dataset = cfg.EvalDataset
    eval_loader = create('EvalReader')(dataset, cfg['worker_num'])
    extra_key = ['im_shape', 'scale_factor', 'im_id']
    if cfg.metric == 'VOC':
        extra_key += ['gt_bbox', 'gt_class', 'difficult']

    # Run Eval
    outs_res = []
    sample_num = 0
    start_time = time.time()
    for iter_id, data in enumerate(eval_loader):
        # forward
        model.eval()
        outs = model(data, mode='infer')
        for key in extra_key:
            outs[key] = data[key]
        for key, value in outs.items():
            outs[key] = value.numpy()

        if 'mask' in outs and 'bbox' in outs:
            mask_resolution = model.mask_post_process.mask_resolution
            from ppdet.py_op.post_process import mask_post_process
            outs['mask'] = mask_post_process(outs, outs['im_shape'],
                                             outs['scale_factor'],
                                             mask_resolution)

        outs_res.append(outs)
        # log
        sample_num += outs['im_id'].shape[0]
        if iter_id % 100 == 0:
            logger.info("Eval iter: {}".format(iter_id))

    cost_time = time.time() - start_time
    logger.info('Total sample number: {}, averge FPS: {}'.format(
        sample_num, sample_num / cost_time))

    eval_type = []
    if 'bbox' in outs:
        eval_type.append('bbox')
    if 'mask' in outs:
        eval_type.append('mask')
    # Metric
    # TODO: support other metric
    with_background = cfg.with_background
    use_default_label = dataset.use_default_label
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import get_category_info
        clsid2catid, catid2name = get_category_info(dataset.get_anno(),
                                                    with_background,
                                                    use_default_label)

        infer_res = get_infer_results(outs_res, eval_type, clsid2catid)

    elif cfg.metric == 'VOC':
        from ppdet.utils.voc_eval import get_category_info
        clsid2catid, catid2name = get_category_info(dataset.get_label_list(),
                                                    with_background,
                                                    use_default_label)
        infer_res = outs_res

    eval_results(infer_res, cfg.metric, dataset)