示例#1
0
def hardnet_85(pretrained=False, return_transforms=False, **kwargs):
    model = HarDNet(arch=85, **kwargs)
    if pretrained:
        model = load_model(model, urls["hardnet_85"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#2
0
def rexnet_3_0(pretrained=False, return_transforms=False, **kwargs):
    model = ReXNet(width_mult=3.0, **kwargs)
    if pretrained:
        model = load_model(model, urls["rexnet_3_0"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#3
0
def hardnet_68_ds(pretrained=False, return_transforms=False, **kwargs):
    model = HarDNet(arch=68, depth_wise=True, **kwargs)
    if pretrained:
        model = load_model(model, urls["hardnet_68_ds"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#4
0
def swin_s(pretrained=False, return_transforms=False, **kwargs):
    model = SwinTransformer(depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], **kwargs)
    if pretrained:
        model = load_model(model, urls["swin_s"])
    if return_transforms:
        return model, transforms_224
    else:
        return model
示例#5
0
def swin_ti(pretrained=False, return_transforms=False, **kwargs):
    model = SwinTransformer(**kwargs)
    if pretrained:
        model = load_model(model, urls["swin_ti"])
    if return_transforms:
        return model, transforms_224
    else:
        return model
示例#6
0
def rednet_152(pretrained=False, return_transforms=False, **kwargs):
    model = RedNet(BottleneckBlock, 152, **kwargs)
    if pretrained:
        model = load_model(model, urls["rednet_152"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#7
0
def pvt_l(pretrained=False, return_transforms=False, **kwargs):
    model = PyramidVisionTransformer(depths=[3, 8, 27, 3], **kwargs)
    if pretrained:
        model = load_model(model, urls["pvt_l"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#8
0
def swin_b(pretrained=False, return_transforms=False, **kwargs):
    model = SwinTransformer(
        embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], **kwargs
    )
    if pretrained:
        model = load_model(model, urls["swin_b"])
    if return_transforms:
        return model, transforms_224
    else:
        return model
示例#9
0
def dla_34(pretrained=False, return_transforms=False, **kwargs):
    model = DLA(levels=(1, 1, 1, 2, 2, 1),
                channels=(16, 32, 64, 128, 256, 512),
                block=DlaBasic,
                **kwargs)
    if pretrained:
        model = load_model(model, urls["dla_34"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#10
0
def dla_60(pretrained=False, return_transforms=False, **kwargs):
    model = DLA(levels=(1, 1, 1, 2, 3, 1),
                channels=(16, 32, 128, 256, 512, 1024),
                block=DlaBottleneck,
                **kwargs)
    if pretrained:
        model = load_model(model, urls["dla_60"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#11
0
def mixer_l(pretrained=False, return_transforms=False, **kwargs):
    model = MlpMixer(hidden_dim=1024,
                     num_blocks=24,
                     tokens_mlp_dim=512,
                     channels_mlp_dim=4096,
                     **kwargs)
    if pretrained:
        model = load_model(model, urls["mixer_l"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#12
0
def mixer_b(pretrained=False, return_transforms=False, **kwargs):
    model = MlpMixer(hidden_dim=768,
                     num_blocks=12,
                     tokens_mlp_dim=384,
                     channels_mlp_dim=3072,
                     **kwargs)
    if pretrained:
        model = load_model(model, urls["mixer_b"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#13
0
def repvgg_a2(pretrained=False, return_transforms=False, **kwargs):
    model = RepVGG(
        num_blocks=[2, 4, 14, 1],
        width_multiplier=[1.5, 1.5, 1.5, 2.75],
        override_groups_map=None,
        **kwargs
    )
    if pretrained:
        model = load_model(model, urls["repvgg_a2"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#14
0
def t2t_vit_19(pretrained=False, return_transforms=False, **kwargs):
    model = T2T_ViT(tokens_type="performer",
                    embed_dim=448,
                    depth=19,
                    num_heads=7,
                    mlp_ratio=3.0,
                    **kwargs)
    if pretrained:
        model = load_model(model, urls["t2t_vit_19"])
    if return_transforms:
        return model, transforms_224
    else:
        return model
示例#15
0
def t2t_vit_t_24(pretrained=False, return_transforms=False, **kwargs):
    model = T2T_ViT(tokens_type="transformer",
                    embed_dim=512,
                    depth=24,
                    num_heads=8,
                    mlp_ratio=3.0,
                    **kwargs)
    if pretrained:
        model = load_model(model, urls["t2t_vit_t_24"])
    if return_transforms:
        return model, transforms_224
    else:
        return model
示例#16
0
def dla_60x_c(pretrained=False, return_transforms=False, **kwargs):
    model = DLA(levels=(1, 1, 1, 2, 3, 1),
                channels=(16, 32, 64, 64, 128, 256),
                block=DlaBottleneck,
                cardinality=32,
                base_width=4,
                **kwargs)
    if pretrained:
        model = load_model(model, urls["dla_60x_c"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#17
0
def repvgg_b3g4(pretrained=False, return_transforms=False, **kwargs):
    model = RepVGG(
        num_blocks=[4, 6, 16, 1],
        width_multiplier=[3, 3, 3, 5],
        override_groups_map=g4_map,
        **kwargs
    )
    if pretrained:
        model = load_model(model, urls["repvgg_b3g4"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#18
0
def dla_102x2(pretrained=False, return_transforms=False, **kwargs):
    model = DLA(levels=(1, 1, 1, 3, 4, 1),
                channels=(16, 32, 128, 256, 512, 1024),
                block=DlaBottleneck,
                cardinality=64,
                base_width=4,
                residual_root=True,
                **kwargs)
    if pretrained:
        model = load_model(model, urls["dla_102x2"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#19
0
def t2t_vit_14_384(pretrained=False, return_transforms=False, **kwargs):
    model = T2T_ViT(img_size=384,
                    tokens_type="performer",
                    embed_dim=384,
                    depth=14,
                    num_heads=6,
                    mlp_ratio=3.0,
                    **kwargs)
    if pretrained:
        model = load_model(model, urls["t2t_vit_14_384"])
    if return_transforms:
        return model, transforms_384
    else:
        return model
示例#20
0
def cait_m_48_448(pretrained=False, return_transforms=False, **kwargs):
    model = CaiT(img_size=448,
                 embed_dim=768,
                 depth=48,
                 num_heads=16,
                 init_scale=1e-6,
                 **kwargs)

    if pretrained:
        model = load_model(model, urls["cait_m_48_448"])
    if return_transforms:
        return model, transforms_448
    else:
        return model
示例#21
0
def cait_m_36_384(pretrained=False, return_transforms=False, **kwargs):
    model = CaiT(img_size=384,
                 embed_dim=768,
                 depth=36,
                 num_heads=16,
                 init_scale=1e-6,
                 **kwargs)

    if pretrained:
        model = load_model(model, urls["cait_m_36_384"])
    if return_transforms:
        return model, transforms_384
    else:
        return model
示例#22
0
def cait_xs_24_384(pretrained=False, return_transforms=False, **kwargs):
    model = CaiT(img_size=384,
                 embed_dim=288,
                 depth=24,
                 num_heads=6,
                 init_scale=1e-5,
                 **kwargs)

    if pretrained:
        model = load_model(model, urls["cait_xs_24_384"])
    if return_transforms:
        return model, transforms_384
    else:
        return model
示例#23
0
def cait_xxs_36(pretrained=False, return_transforms=False, **kwargs):
    model = CaiT(img_size=224,
                 embed_dim=192,
                 depth=36,
                 num_heads=4,
                 init_scale=1e-5,
                 **kwargs)

    if pretrained:
        model = load_model(model, urls["cait_xxs_36"])
    if return_transforms:
        return model, transforms_224
    else:
        return model
示例#24
0
def deit_b_distilled(pretrained=False, return_transforms=False, **kwargs):
    model = DistilledVisionTransformer(patch_size=16,
                                       embed_dim=768,
                                       depth=12,
                                       num_heads=12,
                                       mlp_ratio=4,
                                       qkv_bias=True,
                                       epsilon=1e-6,
                                       **kwargs)
    if pretrained:
        model = load_model(model, urls["deit_b_distilled"])
    if return_transforms:
        return model, transforms_224
    else:
        return model
示例#25
0
def pit_b(pretrained=False, return_transforms=False, **kwargs):
    model = PoolingTransformer(image_size=224,
                               patch_size=14,
                               stride=7,
                               base_dims=[64, 64, 64],
                               depth=[3, 6, 4],
                               heads=[4, 8, 16],
                               mlp_ratio=4,
                               **kwargs)
    if pretrained:
        model = load_model(model, urls["pit_b"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#26
0
def pit_s(pretrained=False, return_transforms=False, **kwargs):
    model = PoolingTransformer(image_size=224,
                               patch_size=16,
                               stride=8,
                               base_dims=[48, 48, 48],
                               depth=[2, 6, 4],
                               heads=[3, 6, 12],
                               mlp_ratio=4,
                               **kwargs)
    if pretrained:
        model = load_model(model, urls["pit_s"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#27
0
def pit_ti_distilled(pretrained=False, return_transforms=False, **kwargs):
    model = DistilledPoolingTransformer(image_size=224,
                                        patch_size=16,
                                        stride=8,
                                        base_dims=[32, 32, 32],
                                        depth=[2, 6, 4],
                                        heads=[2, 4, 8],
                                        mlp_ratio=4,
                                        **kwargs)
    if pretrained:
        model = load_model(model, urls["pit_ti_distilled"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#28
0
def swin_b_384(pretrained=False, return_transforms=False, **kwargs):
    model = SwinTransformer(
        img_size=384,
        embed_dim=128,
        depths=[2, 2, 18, 2],
        num_heads=[4, 8, 16, 32],
        window_size=12,
        **kwargs,
    )
    if pretrained:
        model = load_model(model, urls["swin_b_384"])
    if return_transforms:
        return model, transforms_384
    else:
        return model
示例#29
0
def coat_m(pretrained=False, return_transforms=False, **kwargs):
    model = CoaT(
        patch_size=4,
        embed_dims=[152, 216, 216, 216],
        serial_depths=[2, 2, 2, 2],
        parallel_depth=6,
        num_heads=8,
        mlp_ratios=[4, 4, 4, 4],
        **kwargs,
    )
    if pretrained:
        model = load_model(model, urls["coat_m"])
    if return_transforms:
        return model, transforms
    else:
        return model
示例#30
0
def coat_lite_s(pretrained=False, return_transforms=False, **kwargs):
    model = CoaT(
        patch_size=4,
        embed_dims=[64, 128, 320, 512],
        serial_depths=[3, 4, 6, 3],
        parallel_depth=0,
        num_heads=8,
        mlp_ratios=[8, 8, 4, 4],
        **kwargs,
    )
    if pretrained:
        model = load_model(model, urls["coat_lite_s"])
    if return_transforms:
        return model, transforms
    else:
        return model