def tot_L(r_u, r_v, r_h, tau, eta): tau = tau[0, :] eta = eta[:, 0] Lu = np.array(sc.integral_lenght_scale(r_u, tau, eta)) Lv = np.array(sc.integral_lenght_scale(r_v, tau, eta)) Lh = np.array(sc.integral_lenght_scale(r_h, tau, eta)) return np.r_[Lu, Lv, Lh]
ruvi = np.vstack([ sc.autocorr_interp_sq(r, t, e, tau_lin=taui, eta_lin=etai)[2].T for t, e, r in zip(tau_list, eta_list, ruv_list) ]) ru_mean = np.nanmean(rui.reshape( (int(len(rui) / (N + 1)), N + 1, N + 1)), axis=0) rv_mean = np.nanmean(rvi.reshape( (int(len(rvi) / (N + 1)), N + 1, N + 1)), axis=0) ruv_mean = np.nanmean(ruvi.reshape( (int(len(ruvi) / (N + 1)), N + 1, N + 1)), axis=0) Luxm, Luym = sc.integral_lenght_scale(ru_mean, taui[0, :], etai[:, 0]) Lvxm, Lvym = sc.integral_lenght_scale(rv_mean, taui[0, :], etai[:, 0]) Lhxm, Lhym = sc.integral_lenght_scale(.5 * (ru_mean + rv_mean), taui[0, :], etai[:, 0]) data = np.c_[taui.flatten(), etai.flatten(), ru_mean.flatten(), rv_mean.flatten(), ruv_mean.flatten()] times = np.repeat(t_arrayhms[i], len(taui.flatten())) names_ids = np.repeat(name_id, len(taui.flatten())) columns = ['tau', 'eta', 'ru', 'rv', 'ruv']
#plt.figure() #plt.contourf(grid_new[0], grid_new[1], U_o, cmap='jet') #plt.colorbar() #plt.figure() #plt.contourf(grid_new[0], grid_new[1], V_o, cmap='jet') #plt.colorbar() ######################### # Autocorreltion and length scales U_mean = np.nanmean(Ur.flatten()) V_mean = np.nanmean(Vr.flatten()) gamma = np.arctan2(V_mean,U_mean) tau,eta,r_u,r_v,r_uv,_,_,_,_ = sc.spatial_autocorr_sq(grid_new,Ur,Vr, transform = False, transform_r = True,gamma=gamma,e_lim=.1,refine=32) Lu = np.array(sc.integral_lenght_scale(r_u,tau,eta)) Lv = np.array(sc.integral_lenght_scale(r_v,tau,eta)) ######################### ##################################### """ end of testing (not testing anymore though)""" ##################################### # In[] for dir_mean in Dir:#km5: for each direction. Do you generate different realizations by rotatiing the scanners ? vtx0, wts0, w0, c_ref0, s_ref0, shapes,uv0_t,vu_beam_0,uv0 = sy.early_weights_pulsed(r_0_g,np.pi-phi_0_g, dl, dir_mean , tri, -d/2, y[0]/2,orig0,0,L_x,L_y)#km5: pass the local polar coordinates of the scanner0