def main():

    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_UNITTEST)
    dataset_config.data_split = "trainval"
    unittest_dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

    gen_label_clusters.main(unittest_dataset)
    gen_mini_batches.main(unittest_dataset)
示例#2
0
    def setUpClass(cls):
        # Initialize the Kitti dataset
        test_dir = tests.test_path()

        # Get the unittest-kitti dataset
        dataset_builder = DatasetBuilder()
        cls.dataset = dataset_builder.build_kitti_dataset(
            dataset_builder.KITTI_UNITTEST)

        cls.log_dir = test_dir + '/logs'
        cls.bev_vgg_cls = vgg.BevVggClassification()
示例#3
0
    def get_fake_dataset(self, data_split, directory):
        dataset_config = DatasetBuilder.copy_config(
            DatasetBuilder.PANOPTIC_UNITTEST)

        # Overwrite config values
        dataset_config.data_split = data_split
        dataset_config.dataset_dir = directory

        dataset = DatasetBuilder.build_panoptic_dataset(dataset_config)

        return dataset
示例#4
0
    def test_project_to_image_space_tensors(self):

        anchors = np.asarray([[0, 0, 3, 2, 0, 6], [3, 0, 3, 2, 0, 2]],
                             dtype=np.float64)
        img_idx = int('000217')
        img_shape = [375, 1242]

        dataset_config = DatasetBuilder.copy_config(
            DatasetBuilder.KITTI_UNITTEST)

        dataset_config.data_split = 'train'
        dataset_config.dataset_dir = tests.test_path() + \
            "/datasets/Kitti/object"

        dataset = DatasetBuilder().build_kitti_dataset(dataset_config)

        stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir,
                                                       img_idx).p2

        # Project the 3D points in numpy space
        img_corners, img_corners_norm = anchor_projector.project_to_image_space(
            anchors, stereo_calib_p2, img_shape)

        # convert the required params to tensors
        tf_stereo_calib_p2 = tf.convert_to_tensor(stereo_calib_p2,
                                                  dtype=tf.float32)
        tf_anchors = tf.convert_to_tensor(anchors, dtype=tf.float32)
        tf_img_shape = tf.convert_to_tensor(img_shape, dtype=tf.float32)

        # Project the 3D points in tensor space
        img_corners_tensor, img_corners_norm_tensor = \
            anchor_projector.tf_project_to_image_space(tf_anchors,
                                                       tf_stereo_calib_p2,
                                                       tf_img_shape)

        sess = tf.Session()
        with sess.as_default():
            img_corners_out = img_corners_tensor.eval()
            img_corners_norm_out = img_corners_norm_tensor.eval()
            np.testing.assert_allclose(img_corners,
                                       img_corners_out,
                                       atol=1e-04,
                                       err_msg='Incorrect corner projection')
            np.testing.assert_allclose(
                img_corners_norm,
                img_corners_norm_out,
                atol=1e-04,
                err_msg='Incorrect normalized corner projection')
示例#5
0
    def test_data_splits(self):
        bad_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_UNITTEST)

        # Test invalid splits
        bad_config.data_split = "bad"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Should be "train"
        bad_config.data_split = "training"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Should be "val"
        bad_config.data_split = "validation"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Should be "test"
        bad_config.data_split = "testing"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Train split
        train_dataset = self.get_fake_dataset('train', self.fake_kitti_dir)
        self.assertEqual(train_dataset.num_samples, 7)

        # Validation split
        validation_dataset = self.get_fake_dataset('val', self.fake_kitti_dir)
        self.assertEqual(validation_dataset.num_samples, 6)

        # Train + validation split
        trainval_dataset = self.get_fake_dataset('trainval',
                                                 self.fake_kitti_dir)
        self.assertEqual(trainval_dataset.num_samples, 13)

        # Test split
        test_dataset = self.get_fake_dataset('test', self.fake_kitti_dir)
        self.assertEqual(test_dataset.num_samples, 10)
示例#6
0
    def setUpClass(cls):
        pipeline_config = pipeline_pb2.NetworkPipelineConfig()
        dataset_config = pipeline_config.dataset_config
        config_path = pplp.root_dir() + '/configs/unittest_model.config'

        cls.model_config = config_build.get_model_config_from_file(config_path)

        dataset_config.MergeFrom(DatasetBuilder.KITTI_UNITTEST)
        cls.dataset = DatasetBuilder.build_kitti_dataset(dataset_config)
示例#7
0
def inference(model_config, eval_config,
              dataset_config, data_split,
              ckpt_indices):

    # Overwrite the defaults
    dataset_config = config_builder.proto_to_obj(dataset_config)

    dataset_config.data_split = data_split
    dataset_config.data_split_dir = 'training'
    if data_split == 'test':
        dataset_config.data_split_dir = 'testing'

    eval_config.eval_mode = 'test'
    eval_config.evaluate_repeatedly = False

    dataset_config.has_labels = False
    # Enable this to see the actually memory being used
    eval_config.allow_gpu_mem_growth = True

    eval_config = config_builder.proto_to_obj(eval_config)
    # Grab the checkpoint indices to evaluate
    eval_config.ckpt_indices = ckpt_indices

    # Remove augmentation during evaluation in test mode
    dataset_config.aug_list = []

    # Build the dataset object
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
                                                 use_defaults=False)

    # Setup the model
    model_name = model_config.model_name
    # Overwrite repeated field
    model_config = config_builder.proto_to_obj(model_config)
    # Switch path drop off during evaluation
    model_config.path_drop_probabilities = [1.0, 1.0]

    with tf.Graph().as_default():
        if model_name == 'avod_model':
            model = AvodModel(model_config,
                              train_val_test=eval_config.eval_mode,
                              dataset=dataset)
        elif model_name == 'rpn_model':
            model = RpnModel(model_config,
                             train_val_test=eval_config.eval_mode,
                             dataset=dataset)
        else:
            raise ValueError('Invalid model name {}'.format(model_name))

        model_evaluator = Evaluator(model, dataset_config, eval_config)
        model_evaluator.run_latest_checkpoints()
示例#8
0
    def setUp(self):
        tf.test.TestCase.setUp(self)

        test_pipeline_config_path = pplp.root_dir() + \
            '/configs/unittest_pipeline.config'

        self.model_config, self.train_config, _,  dataset_config = \
            config_builder.get_configs_from_pipeline_file(
                test_pipeline_config_path, is_training=True)

        # Generate dataset
        self.dataset = DatasetBuilder.build_kitti_dataset(
            DatasetBuilder.KITTI_UNITTEST,
            use_defaults=False,
            new_cfg=dataset_config)
示例#9
0
def main(dataset=None):
    if not dataset:
        dataset = DatasetBuilder.build_kitti_dataset(
            DatasetBuilder.KITTI_TRAIN)

    label_cluster_utils = dataset.kitti_utils.label_cluster_utils

    print("Generating clusters in {}/{}".format(label_cluster_utils.data_dir,
                                                dataset.data_split))
    clusters, std_devs = dataset.get_cluster_info()

    print("Clusters generated")
    print("classes: {}".format(dataset.classes))
    print("num_clusters: {}".format(dataset.num_clusters))
    print("all_clusters:\n {}".format(clusters))
    print("all_std_devs:\n {}".format(std_devs))
示例#10
0
def train(model_config, train_config, dataset_config):

    dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
                                                 use_defaults=False)

    train_val_test = 'train'
    model_name = model_config.model_name

    with tf.Graph().as_default():
        if model_name == 'rpn_model':
            model = RpnModel(model_config,
                             train_val_test=train_val_test,
                             dataset=dataset)
        elif model_name == 'avod_model':
            model = AvodModel(model_config,
                              train_val_test=train_val_test,
                              dataset=dataset)
        else:
            raise ValueError('Invalid model_name')

        trainer.train(model, train_config)
示例#11
0
def main():
    """
    Displays the bird's eye view maps for a KITTI sample.
    """

    ##############################
    # Options
    ##############################

    bev_generator = 'slices'

    slices_config = \
        """
        slices {
            height_lo: 0.9 # -0.2
            height_hi: 1.0 # 2.3
            num_slices: 1 # 5
        }
        """

    # Use None for a random image
    # img_idx = None
    img_idx = 571
    # img_idx = 191

    show_ground_truth = True  # Whether to overlay ground_truth boxes

    point_cloud_source = 'lidar'
    ##############################
    # End of Options
    ##############################

    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL)
    dataset_config = DatasetBuilder.merge_defaults(dataset_config)

    # Overwrite bev_generator
    if bev_generator == 'slices':
        text_format.Merge(slices_config,
                          dataset_config.kitti_utils_config.bev_generator)
    else:
        raise ValueError('Invalid bev_generator')

    print('dataset_config = ', dataset_config)
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
                                                 use_defaults=False)

    if img_idx is None:
        img_idx = int(random.random() * dataset.num_samples)

    sample_name = "{:06}".format(img_idx)
    print('=== Showing BEV maps for image: {}.png ==='.format(sample_name))

    # Load image
    image = cv2.imread(dataset.get_rgb_image_path(sample_name))
    image_shape = image.shape[0:2]

    kitti_utils = dataset.kitti_utils
    point_cloud = kitti_utils.get_point_cloud(point_cloud_source, img_idx,
                                              image_shape)
    ground_plane = kitti_utils.get_ground_plane(sample_name)
    bev_images = kitti_utils.create_bev_maps(point_cloud, ground_plane)

    height_maps = np.array(bev_images.get("height_maps"))
    density_map = np.array(bev_images.get("density_map"))

    box_points, box_points_norm = [None, None]
    if show_ground_truth:
        # Get projected boxes
        obj_labels = obj_utils.read_labels(dataset.label_dir, img_idx)
        filtered_objs = dataset.kitti_utils.filter_labels(
            obj_labels, ['Car', 'Pedestrian'])
        # filtered_objs = dataset.kitti_utils.filter_labels(
        #     obj_labels, ['Car', 'Van', 'Pedestrian', 'Cyclist'])
        print('filtered_objs = ', filtered_objs)

        label_boxes = []
        for label in filtered_objs:
            box = box_3d_encoder.object_label_to_box_3d(label)
            label_boxes.append(box)

        label_boxes = np.array(label_boxes)
        box_points, box_points_norm = box_3d_projector.project_to_bev(
            label_boxes, [[-40, 40], [0, 70]])

    rgb_img_size = (np.array((1242, 375)) * 0.75).astype(np.int16)
    img_x_start = 60
    img_y_start = 330

    img_x = img_x_start
    img_y = img_y_start
    img_w = 400
    img_h = 350
    img_titlebar_h = 20

    # Show images
    vis_utils.cv2_show_image("Image",
                             image,
                             size_wh=rgb_img_size,
                             location_xy=(img_x, 0))

    # Height maps
    for map_idx in range(len(height_maps)):
        height_map = height_maps[map_idx]

        height_map = draw_boxes(height_map, box_points_norm)
        vis_utils.cv2_show_image("Height Map {}".format(map_idx),
                                 height_map,
                                 size_wh=(img_w, img_h),
                                 location_xy=(img_x, img_y))

        img_x += img_w
        # Wrap around
        if (img_x + img_w) > 1920:
            img_x = img_x_start
            img_y += img_h + img_titlebar_h

    # Density map
    density_map = draw_boxes(density_map, box_points_norm)
    vis_utils.cv2_show_image("Density Map",
                             density_map,
                             size_wh=(img_w, img_h),
                             location_xy=(img_x, img_y))

    cv2.waitKey()
示例#12
0
def evaluate(model_config, eval_config, dataset_config):

    # Parse eval config
    eval_mode = eval_config.eval_mode
    if eval_mode not in ['val', 'test']:
        raise ValueError('Evaluation mode can only be set to `val` or `test`')
    evaluate_repeatedly = eval_config.evaluate_repeatedly

    # Parse dataset config
    data_split = dataset_config.data_split
    if data_split == 'train':
        dataset_config.data_split_dir = 'training'
        dataset_config.has_labels = True

    elif data_split.startswith('val'):
        dataset_config.data_split_dir = 'training'

        # Don't load labels for val split when running in test mode
        if eval_mode == 'val':
            dataset_config.has_labels = True
        elif eval_mode == 'test':
            dataset_config.has_labels = False

    elif data_split == 'test':
        dataset_config.data_split_dir = 'testing'
        dataset_config.has_labels = False

    else:
        raise ValueError('Invalid data split', data_split)

    # Convert to object to overwrite repeated fields
    dataset_config = config_builder.proto_to_obj(dataset_config)

    # Remove augmentation during evaluation
    dataset_config.aug_list = []

    # Build the dataset object
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
                                                 use_defaults=False)

    # Setup the model
    model_name = model_config.model_name

    # Convert to object to overwrite repeated fields
    model_config = config_builder.proto_to_obj(model_config)

    # Switch path drop off during evaluation
    model_config.path_drop_probabilities = [1.0, 1.0]

    with tf.Graph().as_default():
        if model_name == 'avod_model':
            model = AvodModel(model_config,
                              train_val_test=eval_mode,
                              dataset=dataset)
        elif model_name == 'rpn_model':
            model = RpnModel(model_config,
                             train_val_test=eval_mode,
                             dataset=dataset)
        else:
            raise ValueError('Invalid model name {}'.format(model_name))

        model_evaluator = Evaluator(model, dataset_config, eval_config)

        if evaluate_repeatedly:
            model_evaluator.repeated_checkpoint_run()
        else:
            model_evaluator.run_latest_checkpoints()
示例#13
0
    def setUpClass(cls):
        cls.dataset = DatasetBuilder.build_kitti_dataset(
            DatasetBuilder.KITTI_UNITTEST)

        cls.mb_utils = cls.dataset.kitti_utils.mini_batch_utils
示例#14
0
def main():
    """Generates anchors info which is used for mini batch sampling.

    Processing on 'Cars' can be split into multiple processes, see the Options
    section for configuration.

    Args:
        dataset: KittiDataset (optional)
            If dataset is provided, only generate info for that dataset.
            If no dataset provided, generates info for all 3 classes.
    """

    kitti_dataset_config_path = pplp.root_dir() + \
        '/configs/mb_preprocessing/rpn_pedestrians.config'

    ##############################
    # Options
    ##############################
    # Serial vs parallel processing
    in_parallel = False

    process_ped = True

    # Number of child processes to fork, samples will
    #  be divided evenly amongst the processes (in_parallel must be True)
    num_ped_children = 8

    ##############################
    # Dataset setup
    ##############################

    if process_ped:
        ped_dataset = DatasetBuilder.load_dataset_from_config(
            kitti_dataset_config_path)

    ##############################
    # Serial Processing
    ##############################
    if not in_parallel:
        if process_ped:
            do_preprocessing(ped_dataset, None)

        print('All Done (Serial)')

    ##############################
    # Parallel Processing
    ##############################
    else:

        # List of all child pids to wait on
        all_child_pids = []

        # Pedestrians
        if process_ped:
            ped_indices_split = split_indices(ped_dataset, num_ped_children)
            split_work(all_child_pids, ped_dataset, ped_indices_split,
                       num_ped_children)

        # Wait to child processes to finish
        print('num children:', len(all_child_pids))
        for i, child_pid in enumerate(all_child_pids):
            os.waitpid(child_pid, 0)

        print('All Done (Parallel)')
示例#15
0
def main():
    """
    Calculates and prints the mean values for the RGB channels in a dataset
    """

    dataset_builder = DatasetBuilder()
    dataset = dataset_builder.build_kitti_dataset(
        dataset_builder.KITTI_TRAIN
        # dataset_builder.KITTI_TRAIN_MINI
    )

    # Options
    debug_print = True
    get_bev_mean = False

    # Dataset values
    dataset_utils = dataset.kitti_utils
    num_samples = dataset.num_samples
    clusters, _ = dataset.get_cluster_info()
    num_bev_maps = len(clusters) + 1  # Height Maps + Density Map

    pixels_sum = np.zeros(3)  # RGB
    bev_sum = np.zeros(num_bev_maps)

    for sample_idx in range(num_samples):
        sample_name = dataset.sample_names[sample_idx]

        image_path = dataset.get_rgb_image_path(sample_name)
        image = np.asarray(Image.open(image_path))

        pixels_r = np.mean(image[:, :, 0])
        pixels_g = np.mean(image[:, :, 1])
        pixels_b = np.mean(image[:, :, 2])

        pixel_means = np.stack((pixels_r, pixels_g, pixels_b))
        pixels_sum += pixel_means

        if get_bev_mean:
            bev_images = dataset_utils.create_bev_maps(sample_name,
                                                       source='lidar')
            height_maps = np.asarray(bev_images['height_maps'])
            density_map = np.asarray(bev_images['density_map'])

            height_means = [np.mean(height_map) for height_map in height_maps]
            density_mean = np.mean(density_map)

            bev_means = np.stack((*height_means, density_mean))
            bev_sum += bev_means

        if debug_print:
            debug_string = '{} / {}, Sample {}, pixel_means {}'.format(
                sample_idx + 1, num_samples, sample_name, pixel_means)
            if get_bev_mean:
                debug_string += ' density_means {}'.format(bev_means)

            print(debug_string)

    print("Dataset: {}, split: {}".format(dataset.name, dataset.data_split))
    print("Image mean: {}".format(pixels_sum / num_samples))

    if get_bev_mean:
        print("BEV mean: {}".format(bev_sum / num_samples))
示例#16
0
def main():
    """
    Calculates clusters for each class

    Returns:
        all_clusters: list of clusters for each class
        all_std_devs: list of cluster standard deviations for each class
    """

    dataset = DatasetBuilder.build_kitti_dataset(DatasetBuilder.KITTI_TRAIN)

    # Calculate the remaining clusters
    # Load labels corresponding to the sample list for clustering
    sample_list = dataset.load_sample_names(dataset.cluster_split)
    all_dims = []

    num_samples = len(sample_list)
    for sample_idx in range(num_samples):

        sys.stdout.write("\rClustering labels {} / {}".format(
            sample_idx + 1, num_samples))
        sys.stdout.flush()

        sample_name = sample_list[sample_idx]
        img_idx = int(sample_name)

        obj_labels = obj_utils.read_labels(dataset.label_dir, img_idx)
        filtered_lwh = LabelClusterUtils._filter_labels_by_class(
            obj_labels, dataset.classes)

        if filtered_lwh[0]:
            all_dims.extend(filtered_lwh[0])

    all_dims = np.array(all_dims)
    print("\nFinished reading labels, clustering data...\n")

    # Print 3 decimal places
    np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})

    # Calculate average cluster
    k_means = KMeans(n_clusters=1, random_state=0).fit(all_dims)

    cluster_centre = k_means.cluster_centers_[0]

    # Calculate std. dev
    std_dev = np.std(all_dims, axis=0)

    # Calculate 2 and 3 standard deviations below the mean
    two_sigma_length_lo = cluster_centre[0] - 2 * std_dev[0]
    three_sigma_length_lo = cluster_centre[0] - 3 * std_dev[0]

    # Remove all labels with length above two std dev
    # from the mean and re-cluster
    small_mask_2 = all_dims[:, 0] < two_sigma_length_lo
    small_dims_2 = all_dims[small_mask_2]

    small_mask_3 = all_dims[:, 0] < three_sigma_length_lo
    small_dims_3 = all_dims[small_mask_3]

    small_k_means_2 = KMeans(n_clusters=1, random_state=0).fit(small_dims_2)
    small_k_means_3 = KMeans(n_clusters=1, random_state=0).fit(small_dims_3)
    small_std_dev_2 = np.std(small_dims_2, axis=0)
    small_std_dev_3 = np.std(small_dims_3, axis=0)

    print('small_k_means_2:', small_k_means_2.cluster_centers_)
    print('small_k_means_3:', small_k_means_3.cluster_centers_)
    print('small_std_dev_2:', small_std_dev_2)
    print('small_std_dev_3:', small_std_dev_3)

    # Calculate 2 and 3 standard deviations above the mean
    two_sigma_length_hi = cluster_centre[0] + 2 * std_dev[0]
    three_sigma_length_hi = cluster_centre[0] + 3 * std_dev[0]

    # Remove all labels with length above two std dev
    # from the mean and re-cluster
    large_mask_2 = all_dims[:, 0] > two_sigma_length_hi
    large_dims_2 = all_dims[large_mask_2]

    large_mask_3 = all_dims[:, 0] > three_sigma_length_hi
    large_dims_3 = all_dims[large_mask_3]

    large_k_means_2 = KMeans(n_clusters=1, random_state=0).fit(large_dims_2)
    large_k_means_3 = KMeans(n_clusters=1, random_state=0).fit(large_dims_3)

    large_std_dev_2 = np.std(large_dims_2, axis=0)
    large_std_dev_3 = np.std(large_dims_3, axis=0)

    print('large_k_means_2:', large_k_means_2.cluster_centers_)
    print('large_k_means_3:', large_k_means_3.cluster_centers_)
    print('large_std_dev_2:', large_std_dev_2)
    print('large_std_dev_3:', large_std_dev_3)
示例#17
0
def main():
    """This demo shows RPN proposals and AVOD predictions in 3D
    and 2D in image space. Given certain thresholds for proposals
    and predictions, it selects and draws the bounding boxes on
    the image sample. It goes through the entire proposal and
    prediction samples for the given dataset split.

    The proposals, overlaid, and prediction images can be toggled on or off
    separately in the options section.
    The prediction score and IoU with ground truth can be toggled on or off
    as well, shown as (score, IoU) above the detection.
    """
    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL)

    ##############################
    # Options
    ##############################
    dataset_config = DatasetBuilder.merge_defaults(dataset_config)
    dataset_config.data_split = 'val'

    fig_size = (10, 6.1)

    rpn_score_threshold = 0.1
    avod_score_threshold = 0.1

    # gt_classes = ['Car']
    gt_classes = ['Pedestrian']
    # gt_classes = ['Pedestrian', 'Cyclist']

    # Overwrite this to select a specific checkpoint
    global_step = 115000  # None
    checkpoint_name = 'pplp_pedestrian_kitti'

    # Drawing Toggles
    draw_proposals_separate = False
    draw_overlaid = True  # To draw both proposal and predcition bounding boxes
    draw_predictions_separate = False

    # Show orientation for both GT and proposals/predictions
    draw_orientations_on_prop = True
    draw_orientations_on_pred = True

    # Draw 2D bounding boxes
    draw_projected_2d_boxes = True

    # Draw pointclouds
    draw_point_cloud = True
    point_cloud_source = 'lidar'
    slices_config = \
        """
        slices {
            height_lo: -1.0 # -0.2
            height_hi: 2 # 2.3
            num_slices: 1 # 5
        }
        """

    print('slices_config = ', slices_config)

    text_format.Merge(slices_config,
                      dataset_config.kitti_utils_config.bev_generator)

    # Save images for samples with no detections
    save_empty_images = False

    draw_score = True
    draw_iou = True
    ##############################
    # End of Options
    ##############################

    # Get the dataset
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
                                                 use_defaults=False)

    # Setup Paths
    predictions_dir = pplp.root_dir() + \
        '/data/outputs/' + checkpoint_name + '/predictions'

    proposals_and_scores_dir = predictions_dir + \
        '/proposals_and_scores/' + dataset.data_split

    predictions_and_scores_dir = predictions_dir + \
        '/final_predictions_and_scores/' + dataset.data_split

    # Output images directories
    output_dir_base = predictions_dir + '/images_2d'

    # Get checkpoint step
    steps = os.listdir(proposals_and_scores_dir)
    steps.sort(key=int)
    print('Available steps: {}'.format(steps))

    # Use latest checkpoint if no index provided
    if global_step is None:
        global_step = steps[-1]

    if draw_proposals_separate:
        prop_out_dir = output_dir_base + '/proposals/{}/{}/{}'.format(
            dataset.data_split, global_step, rpn_score_threshold)

        if not os.path.exists(prop_out_dir):
            os.makedirs(prop_out_dir)

        print('Proposal images saved to:', prop_out_dir)

    if draw_overlaid:
        overlaid_out_dir = output_dir_base + '/overlaid/{}/{}/{}'.format(
            dataset.data_split, global_step, avod_score_threshold)

        if not os.path.exists(overlaid_out_dir):
            os.makedirs(overlaid_out_dir)

        print('Overlaid images saved to:', overlaid_out_dir)

    if draw_predictions_separate:
        pred_out_dir = output_dir_base + '/predictions/{}/{}/{}'.format(
            dataset.data_split, global_step, avod_score_threshold)

        if not os.path.exists(pred_out_dir):
            os.makedirs(pred_out_dir)

        print('Prediction images saved to:', pred_out_dir)

    # Rolling average array of times for time estimation
    avg_time_arr_length = 10
    last_times = np.repeat(time.time(), avg_time_arr_length) + \
        np.arange(avg_time_arr_length)

    # for sample_idx in range(dataset.num_samples):
    for sample_idx in [6]:
        # Estimate time remaining with 5 slowest times
        start_time = time.time()
        last_times = np.roll(last_times, -1)
        last_times[-1] = start_time
        avg_time = np.mean(np.sort(np.diff(last_times))[-5:])
        samples_remaining = dataset.num_samples - sample_idx
        est_time_left = avg_time * samples_remaining

        # Print progress and time remaining estimate
        sys.stdout.write('\rSaving {} / {}, Avg Time: {:.3f}s, '
                         'Time Remaining: {:.2f}s'.format(
                             sample_idx + 1, dataset.num_samples, avg_time,
                             est_time_left))
        sys.stdout.flush()

        sample_name = dataset.sample_names[sample_idx]
        img_idx = int(sample_name)

        ##############################
        # Proposals
        ##############################
        if draw_proposals_separate or draw_overlaid:
            # Load proposals from files
            proposals_file_path = proposals_and_scores_dir + \
                "/{}/{}.txt".format(global_step, sample_name)
            if not os.path.exists(proposals_file_path):
                print('Sample {}: No proposals, skipping'.format(sample_name))
                continue
            print('Sample {}: Drawing proposals'.format(sample_name))

            proposals_and_scores = np.loadtxt(proposals_file_path)

            proposal_boxes_3d = proposals_and_scores[:, 0:7]
            proposal_scores = proposals_and_scores[:, 7]

            # Apply score mask to proposals
            score_mask = proposal_scores > rpn_score_threshold
            proposal_boxes_3d = proposal_boxes_3d[score_mask]
            proposal_scores = proposal_scores[score_mask]

            proposal_objs = \
                [box_3d_encoder.box_3d_to_object_label(proposal,
                                                       obj_type='Proposal')
                 for proposal in proposal_boxes_3d]

        ##############################
        # Predictions
        ##############################
        if draw_predictions_separate or draw_overlaid:
            predictions_file_path = predictions_and_scores_dir + \
                "/{}/{}.txt".format(global_step,
                                    sample_name)
            if not os.path.exists(predictions_file_path):
                continue

            # Load predictions from files
            predictions_and_scores = np.loadtxt(
                predictions_and_scores_dir +
                "/{}/{}.txt".format(global_step, sample_name))

            prediction_boxes_3d = predictions_and_scores[:, 0:7]
            prediction_scores = predictions_and_scores[:, 7]
            prediction_class_indices = predictions_and_scores[:, 8]

            # process predictions only if we have any predictions left after
            # masking
            if len(prediction_boxes_3d) > 0:

                # Apply score mask
                avod_score_mask = prediction_scores >= avod_score_threshold
                prediction_boxes_3d = prediction_boxes_3d[avod_score_mask]
                prediction_scores = prediction_scores[avod_score_mask]
                prediction_class_indices = \
                    prediction_class_indices[avod_score_mask]

                # # Swap l, w for predictions where w > l
                # swapped_indices = \
                #     prediction_boxes_3d[:, 4] > prediction_boxes_3d[:, 3]
                # prediction_boxes_3d = np.copy(prediction_boxes_3d)
                # prediction_boxes_3d[swapped_indices, 3] = \
                #     prediction_boxes_3d[swapped_indices, 4]
                # prediction_boxes_3d[swapped_indices, 4] = \
                #     prediction_boxes_3d[swapped_indices, 3]

        ##############################
        # Ground Truth
        ##############################

        # Get ground truth labels
        if dataset.has_labels:
            gt_objects = obj_utils.read_labels(dataset.label_dir, img_idx)
        else:
            gt_objects = []

        # Filter objects to desired difficulty
        filtered_gt_objs = dataset.kitti_utils.filter_labels(
            gt_objects, classes=gt_classes)

        boxes2d, _, _ = obj_utils.build_bbs_from_objects(
            filtered_gt_objs, class_needed=gt_classes)

        image_path = dataset.get_rgb_image_path(sample_name)
        image = Image.open(image_path)
        image_size = image.size

        # Read the stereo calibration matrix for visualization
        stereo_calib = calib_utils.read_calibration(dataset.calib_dir, img_idx)
        calib_p2 = stereo_calib.p2

        ##############################
        # Reformat and prepare to draw
        ##############################
        if draw_proposals_separate or draw_overlaid:
            proposals_as_anchors = box_3d_encoder.box_3d_to_anchor(
                proposal_boxes_3d)

            proposal_boxes, _ = anchor_projector.project_to_image_space(
                proposals_as_anchors, calib_p2, image_size)

            num_of_proposals = proposal_boxes_3d.shape[0]

            prop_fig, prop_2d_axes, prop_3d_axes = \
                vis_utils.visualization(dataset.rgb_image_dir,
                                        img_idx,
                                        display=False)

            draw_proposals(filtered_gt_objs, calib_p2, num_of_proposals,
                           proposal_objs, proposal_boxes, prop_2d_axes,
                           prop_3d_axes, draw_orientations_on_prop)
            if draw_point_cloud:
                # Filter the useful pointclouds from all points
                kitti_utils = dataset.kitti_utils
                x, y, z, i = calib_utils.read_lidar(dataset.velo_dir, img_idx)
                point_cloud = np.vstack((x, y, z))
                # pts = calib_utils.lidar_to_cam_frame(pts, frame_calib)
                # point_cloud = kitti_utils.get_point_cloud(
                #     point_cloud_source, img_idx, image_size)
                point_cloud = kitti_utils.get_point_cloud(
                    point_cloud_source, img_idx, image_size)
                print('point_cloud = ', point_cloud)
                ground_plane = kitti_utils.get_ground_plane(sample_name)
                all_points = np.transpose(point_cloud)
                # print('dataset_config.kitti_utils_config.bev_generator.\
                # slices.height_lo = ', dataset_config.kitti_utils_config.bev_generator.slices.height_lo)
                height_lo = dataset_config.kitti_utils_config.bev_generator.slices.height_lo
                height_hi = dataset_config.kitti_utils_config.bev_generator.slices.height_hi

                # config = dataset.config.kitti_utils_config
                # print('config = ', config)
                area_extents = [[0., 70.], [-40, 40], [-1.1, -1]]
                # ?,x,?
                area_extents = np.reshape(area_extents, (3, 2))
                print('area_extents = ', area_extents)
                print('ground_plane = ', ground_plane)
                slice_filter = get_point_filter(point_cloud,
                                                area_extents,
                                                ground_plane=None,
                                                offset_dist=2.0)

                # slice_filter = kitti_utils.create_slice_filter(
                #     point_cloud,
                #     area_extents,
                #     ground_plane,
                #     height_lo,
                #     height_hi)
                # Apply slice filter
                slice_points = all_points[slice_filter]
                print('slice_points = ', slice_points)
                # print('slice_points =', slice_points)
                # Project the useful pointclouds on 2D image
                point_2d = obj_utils.get_lidar_points_on_2D_image(
                    img_idx, dataset.calib_dir, dataset.velo_dir, image_size,
                    True, slice_points)
                draw_points(prop_2d_axes, point_2d, 'red')

            if draw_proposals_separate:
                # Save just the proposals
                filename = prop_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)

                if not draw_overlaid:
                    plt.close(prop_fig)

        if draw_overlaid or draw_predictions_separate:
            if len(prediction_boxes_3d) > 0:
                # Project the 3D box predictions to image space
                image_filter = []
                final_boxes_2d = []
                for i in range(len(prediction_boxes_3d)):
                    box_3d = prediction_boxes_3d[i, 0:7]
                    img_box = box_3d_projector.project_to_image_space(
                        box_3d,
                        calib_p2,
                        truncate=True,
                        image_size=image_size,
                        discard_before_truncation=False)
                    if img_box is not None:
                        image_filter.append(True)
                        final_boxes_2d.append(img_box)
                    else:
                        image_filter.append(False)
                final_boxes_2d = np.asarray(final_boxes_2d)
                final_prediction_boxes_3d = prediction_boxes_3d[image_filter]
                final_scores = prediction_scores[image_filter]
                final_class_indices = prediction_class_indices[image_filter]

                num_of_predictions = final_boxes_2d.shape[0]

                # Convert to objs
                final_prediction_objs = \
                    [box_3d_encoder.box_3d_to_object_label(
                        prediction, obj_type='Prediction')
                        for prediction in final_prediction_boxes_3d]
                for (obj, score) in zip(final_prediction_objs, final_scores):
                    obj.score = score
            else:
                if save_empty_images:
                    pred_fig, pred_2d_axes, pred_3d_axes = \
                        vis_utils.visualization(dataset.rgb_image_dir,
                                                img_idx,
                                                display=False,
                                                fig_size=fig_size)
                    filename = pred_out_dir + '/' + sample_name + '.png'
                    plt.savefig(filename)
                    plt.close(pred_fig)
                continue

            if draw_overlaid:
                # Overlay prediction boxes on image
                draw_predictions(filtered_gt_objs, calib_p2,
                                 num_of_predictions, final_prediction_objs,
                                 final_class_indices, final_boxes_2d,
                                 prop_2d_axes, prop_3d_axes, draw_score,
                                 draw_iou, gt_classes,
                                 draw_orientations_on_pred)
                filename = overlaid_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)

                plt.close(prop_fig)

            if draw_predictions_separate:
                # Now only draw prediction boxes on images
                # on a new figure handler
                if draw_projected_2d_boxes:
                    pred_fig, pred_2d_axes, pred_3d_axes = \
                        vis_utils.visualization(dataset.rgb_image_dir,
                                                img_idx,
                                                display=False,
                                                fig_size=fig_size)

                    draw_predictions(filtered_gt_objs, calib_p2,
                                     num_of_predictions, final_prediction_objs,
                                     final_class_indices, final_boxes_2d,
                                     pred_2d_axes, pred_3d_axes, draw_score,
                                     draw_iou, gt_classes,
                                     draw_orientations_on_pred)
                else:
                    pred_fig, pred_3d_axes = \
                        vis_utils.visualize_single_plot(
                            dataset.rgb_image_dir, img_idx, display=False)

                    draw_3d_predictions(filtered_gt_objs, calib_p2,
                                        num_of_predictions,
                                        final_prediction_objs,
                                        final_class_indices, final_boxes_2d,
                                        pred_3d_axes, draw_score, draw_iou,
                                        gt_classes, draw_orientations_on_pred)
                filename = pred_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)
                plt.close(pred_fig)

    print('\nDone')
示例#18
0
def main():
    """This demo runs through all samples in the trainval set, and checks
    that the 3D box projection of all 'Car', 'Van', 'Pedestrian', and 'Cyclist'
    objects are in the correct flipped 2D location after applying
    modifications to the stereo p2 matrix.
    """

    dataset = DatasetBuilder.build_kitti_dataset(DatasetBuilder.KITTI_TRAINVAL,
                                                 use_defaults=True)

    np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})

    all_samples = dataset.sample_names

    all_pixel_errors = []
    all_max_pixel_errors = []

    total_flip_time = 0.0

    for sample_idx in range(dataset.num_samples):

        sys.stdout.write('\r{} / {}'.format(sample_idx,
                                            dataset.num_samples - 1))

        sample_name = all_samples[sample_idx]

        img_idx = int(sample_name)

        # Run the main loop to run throughout the images
        frame_calibration_info = calib_utils.read_calibration(
            dataset.calib_dir, img_idx)

        # Load labels
        gt_labels = obj_utils.read_labels(dataset.label_dir, img_idx)
        gt_labels = dataset.kitti_utils.filter_labels(
            gt_labels, ['Car', 'Van', 'Pedestrian', 'Cyclist'])

        image = cv2.imread(dataset.get_rgb_image_path(sample_name))
        image_size = [image.shape[1], image.shape[0]]

        # Flip p2 matrix
        calib_p2 = frame_calibration_info.p2
        flipped_p2 = np.copy(calib_p2)
        flipped_p2[0, 2] = image.shape[1] - flipped_p2[0, 2]
        flipped_p2[0, 3] = -flipped_p2[0, 3]

        for obj_idx in range(len(gt_labels)):

            obj = gt_labels[obj_idx]

            # Get original 2D bounding boxes
            orig_box_3d = box_3d_encoder.object_label_to_box_3d(obj)
            orig_bbox_2d = box_3d_projector.project_to_image_space(
                orig_box_3d, calib_p2, truncate=True, image_size=image_size)

            # Skip boxes outside image
            if orig_bbox_2d is None:
                continue

            orig_bbox_2d_flipped = flip_box_2d(orig_bbox_2d, image_size)

            # Do flipping
            start_time = time.time()
            flipped_obj = kitti_aug.flip_label_in_3d_only(obj)
            flip_time = time.time() - start_time
            total_flip_time += flip_time

            box_3d_flipped = box_3d_encoder.object_label_to_box_3d(flipped_obj)
            new_bbox_2d_flipped = box_3d_projector.project_to_image_space(
                box_3d_flipped,
                flipped_p2,
                truncate=True,
                image_size=image_size)

            pixel_errors = new_bbox_2d_flipped - orig_bbox_2d_flipped
            max_pixel_error = np.amax(np.abs(pixel_errors))

            all_pixel_errors.append(pixel_errors)
            all_max_pixel_errors.append(max_pixel_error)

            if max_pixel_error > 5:
                print(' Error > 5px', sample_idx, max_pixel_error)
                print(np.round(orig_bbox_2d_flipped, 3),
                      np.round(new_bbox_2d_flipped, 3))

    print('Avg flip time:', total_flip_time / dataset.num_samples)

    # Convert to ndarrays
    all_pixel_errors = np.asarray(all_pixel_errors)
    all_max_pixel_errors = np.asarray(all_max_pixel_errors)

    # Print max values
    print(np.amax(all_max_pixel_errors))

    # Plot pixel errors
    fig, axes = plt.subplots(nrows=3, ncols=1)
    ax0, ax1, ax2 = axes.flatten()

    ax0.hist(all_pixel_errors[:, 0], 50, histtype='bar', facecolor='green')
    ax1.hist(all_pixel_errors[:, 2], 50, histtype='bar', facecolor='green')
    ax2.hist(all_max_pixel_errors, 50, histtype='bar', facecolor='green')

    plt.show()
示例#19
0
 def setUpClass(cls):
     cls.fake_kitti_dir = tests.test_path() + "/datasets/Kitti/object"
     cls.dataset = DatasetBuilder.build_kitti_dataset(
         DatasetBuilder.KITTI_UNITTEST)
示例#20
0
    def setUpClass(cls):
        dataset_config = DatasetBuilder.copy_config(
            DatasetBuilder.KITTI_UNITTEST)

        cls.dataset = DatasetBuilder.build_kitti_dataset(dataset_config)
        cls.label_dir = cls.dataset.label_dir
示例#21
0
    def setUpClass(cls):
        dataset_config = DatasetBuilder.copy_config(
            DatasetBuilder.PANOPTIC_UNITTEST)

        cls.dataset = DatasetBuilder.build_panoptic_dataset(dataset_config)
        cls.label_dir = cls.dataset.label_dir
示例#22
0
def generate_fake_dataset():
    return DatasetBuilder.build_kitti_dataset(DatasetBuilder.KITTI_UNITTEST)
示例#23
0
def main():
    """
    Visualization of 3D grid anchor generation, showing 2D projections
        in BEV and image space, and a 3D display of the anchors
    """
    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_TRAIN)
    dataset_config.num_clusters[0] = 1
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

    label_cluster_utils = LabelClusterUtils(dataset)
    clusters, _ = label_cluster_utils.get_clusters()

    # Options
    img_idx = 1
    # fake_clusters = np.array([[5, 4, 3], [6, 5, 4]])
    # fake_clusters = np.array([[3, 3, 3], [4, 4, 4]])

    fake_clusters = np.array([[4, 2, 3]])
    fake_anchor_stride = [5.0, 5.0]
    ground_plane = [0, -1, 0, 1.72]

    anchor_3d_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()

    area_extents = np.array([[-40, 40], [-5, 5], [0, 70]])

    # Generate anchors for cars only
    start_time = time.time()
    anchor_boxes_3d = anchor_3d_generator.generate(
        area_3d=dataset.kitti_utils.area_extents,
        anchor_3d_sizes=fake_clusters,
        anchor_stride=fake_anchor_stride,
        ground_plane=ground_plane)
    all_anchors = box_3d_encoder.box_3d_to_anchor(anchor_boxes_3d)
    end_time = time.time()
    print("Anchors generated in {} s".format(end_time - start_time))

    # Project into bev
    bev_boxes, bev_normalized_boxes = \
        anchor_projector.project_to_bev(all_anchors, area_extents[[0, 2]])

    bev_fig, (bev_axes, bev_normalized_axes) = \
        plt.subplots(1, 2, figsize=(16, 7))
    bev_axes.set_xlim(0, 80)
    bev_axes.set_ylim(70, 0)
    bev_normalized_axes.set_xlim(0, 1.0)
    bev_normalized_axes.set_ylim(1, 0.0)

    plt.show(block=False)

    for box in bev_boxes:
        box_w = box[2] - box[0]
        box_h = box[3] - box[1]

        rect = patches.Rectangle((box[0], box[1]),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        bev_axes.add_patch(rect)

    for normalized_box in bev_normalized_boxes:
        box_w = normalized_box[2] - normalized_box[0]
        box_h = normalized_box[3] - normalized_box[1]

        rect = patches.Rectangle((normalized_box[0], normalized_box[1]),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        bev_normalized_axes.add_patch(rect)

    rgb_fig, rgb_2d_axes, rgb_3d_axes = \
        vis_utils.visualization(dataset.rgb_image_dir, img_idx)
    plt.show(block=False)

    image_path = dataset.get_rgb_image_path(dataset.sample_names[img_idx])
    image_shape = np.array(Image.open(image_path)).shape

    stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir,
                                                   img_idx).p2

    start_time = time.time()
    rgb_boxes, rgb_normalized_boxes = \
        anchor_projector.project_to_image_space(all_anchors,
                                                stereo_calib_p2,
                                                image_shape)
    end_time = time.time()
    print("Anchors projected in {} s".format(end_time - start_time))

    # Read the stereo calibration matrix for visualization
    stereo_calib = calib_utils.read_calibration(dataset.calib_dir, 0)
    p = stereo_calib.p2

    # Overlay boxes on images

    for anchor_idx in range(len(anchor_boxes_3d)):
        anchor_box_3d = anchor_boxes_3d[anchor_idx]

        obj_label = box_3d_encoder.box_3d_to_object_label(anchor_box_3d)

        # Draw 3D boxes
        vis_utils.draw_box_3d(rgb_3d_axes, obj_label, p)

        # Draw 2D boxes
        rgb_box_2d = rgb_boxes[anchor_idx]

        box_x1 = rgb_box_2d[0]
        box_y1 = rgb_box_2d[1]
        box_w = rgb_box_2d[2] - box_x1
        box_h = rgb_box_2d[3] - box_y1

        rect = patches.Rectangle((box_x1, box_y1),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        rgb_2d_axes.add_patch(rect)

        if anchor_idx % 32 == 0:
            rgb_fig.canvas.draw()

    plt.show(block=True)