def processAndClassify(frame):
    backgroundClass = 3
    predictionArray = []
    centroidArray   = []
    # Convert the image into a grayscale image
    grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # Apply meanshift on the RGB image
    meanShiftResult = prePro.meanShift(frame)
    # Convert the result of the Mean shifted image into Grayscale
    meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
    # Apply adaptive thresholding on the resulting greyscale image
    meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
    # Draw Contours on the Input image with results from the meanshift 
    contourPlot = prePro.contourDraw(frame, meanShiftAdapResult)
    # Find the contours on the mean shifted image
    contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult)
    # Find the contours on the mean shifted image
    boundBoxContour = grayScaleInput.copy()
    frameBoundingBox = frame.copy()
    # For each contour
    for cnt in contours: 
		# If the area covered by the contour is greater than 500 pixels
        if cv2.contourArea(cnt)>20:
			# Get the bounding box of the contour
            [x, y, w, h] = cv2.boundingRect(cnt)
			# Get the moments of the each contour for computing the centroid of the contour
            moments = cv2.moments(cnt)
            if moments['m00']!=0:
                cx = int(moments['m10']/moments['m00'])         # cx = M10/M00
                cy = int(moments['m01']/moments['m00'])         # cy = M01/M00
                centroid = (cx,cy)
			# cx,cy are the centroid of the contour
                extendBBox = 10
			# Extend it by 10 pixels to avoid missing the key points on the edges
                roiImage = boundBoxContour[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox]
                roiImageFiltered = roiImage
			# Detect the corner key points
                kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered)
			# Use the ORB feature detector and descriptor on the contour
                kp, des, roiKeyPointImage = detDes.featureDescriptorORB(roiImageFiltered, kp)
                if np.size(kp)>0:
                    histPoints = tH.histogramContour(des)
                    prediction = tC.classify(np.float32(histPoints))
				## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid
                    if prediction != backgroundClass:
                        cv2.rectangle(frameBoundingBox,(x,y),(x+w,y+h),(0,255,0),2)
    return contourPlot
	
	
	
	
	
	
	
	
	
	
	
 
	
def processAndClassify(frame):
    backgroundClass = 3
    predictionArray = []
    centroidArray = []
    # Convert the image into a grayscale image
    grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # Apply meanshift on the RGB image
    meanShiftResult = prePro.meanShift(frame)
    # Convert the result of the Mean shifted image into Grayscale
    meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
    # Apply adaptive thresholding on the resulting greyscale image
    meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
    # Draw Contours on the Input image with results from the meanshift
    contourPlot = prePro.contourDraw(frame, meanShiftAdapResult)

    #cv2.imwrite('contourPlot.png',contourPlot)
    # Find the contours on the mean shifted image
    contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult)
    # Find the contours on the mean shifted image
    boundBoxContour = grayScaleInput.copy()
    frameBoundingBox = frame.copy()
    # For each contour
    for cnt in contours:
        # If the area covered by the contour is greater than 500 pixels
        if cv2.contourArea(cnt) > 20:
            # Get the bounding box of the contour
            [x, y, w, h] = cv2.boundingRect(cnt)
            # Get the moments of the each contour for computing the centroid of the contour
            moments = cv2.moments(cnt)
            if moments['m00'] != 0:
                cx = int(moments['m10'] / moments['m00'])  # cx = M10/M00
                cy = int(moments['m01'] / moments['m00'])  # cy = M01/M00
                centroid = (cx, cy)
                # cx,cy are the centroid of the contour
                extendBBox = 10
                # Extend it by 10 pixels to avoid missing the key points on the edges
                roiImage = boundBoxContour[y - extendBBox:y + h + extendBBox,
                                           x - extendBBox:x + w + extendBBox]
                roiImageFiltered = roiImage
                # Detect the corner key points
                kp, roiKeyPointImage = detDes.featureDetectCorner(
                    roiImageFiltered)
                # Use the ORB feature detector and descriptor on the contour
                kp, des, roiKeyPointImage = detDes.featureDescriptorORB(
                    roiImageFiltered, kp)
                if np.size(kp) > 0:
                    histPoints = tH.histogramContour(des)
                    prediction = tC.classify(np.float32(histPoints))
                    ## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid
                    if prediction != backgroundClass:
                        cv2.rectangle(frameBoundingBox, (x, y), (x + w, y + h),
                                      (0, 255, 0), 2)
    return predictionArray, centr
def processAndClassify(frame):
	backgroundClass = 3
	predictionArray = []
	centroidArray   = []
	grayScaleInput = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
	meanShiftAdapResult = prePro.adapThresh(grayScaleInput)
	contours, hierarchy = prePro.contourFind(meanShiftAdapResult)
	for cnt in contours: 
		if cv2.contourArea(cnt)>500:
			[x, y, w, h] = cv2.boundingRect(cnt)
			extendBBox = 5
	           roiImage = grayScaleInput[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox]
			kp, des, roiImageKeyPoints = detDes.featureDetectDesORB(roiImage)
			if np.size(kp)>0:
示例#4
0
import glob
import os

formatName = '*.jpg'
fileList = glob.glob('dataset/' + formatName)

for fileName in fileList:
    image = cv2.imread(fileName)

    grayScaleInput = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # Apply meanshift on the RGB image
    meanShiftResult = prePro.meanShift(image)
    # Convert the result of the Mean shifted image into Grayscale
    meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
    # Apply adaptive thresholding on the resulting greyscale image
    meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
    # Draw Contours on the Input image with results from the meanshift
    contourPlot = prePro.contourDraw(image, meanShiftAdapResult)
    cv2.imshow('contourplot', contourPlot)
    # Find the contours on the mean shifted image
    contours, hierarchy = prePro.contourFind(meanShiftAdapResult)

    ## Use Histogram equalization
    boundBoxContour = grayScaleInput.copy()
    count = 0
    # For each contour
    for cnt in contours:
        # If the area covered by the contour is greater than 500 pixels
        if cv2.contourArea(cnt) > 500:
            # Get the bounding box of the contour
            [x, y, w, h] = cv2.boundingRect(cnt)
formatName = "*.jpg"

fileList = glob.glob(rootInputName + formatName)
print ("Current Directory Name:" + rootInputName)
count = 0
for files in fileList:
	inputImage=cv2.imread(fileList[count])
	fileName = os.path.basename(fileList[count])
	print ("Processing Image " + fileList[count])
	grayScaleInput = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY)
	
	meanShiftResult = prePro.meanShift(inputImage)
	cv2.imwrite(rootMeanName + fileName, meanShiftResult)
	
	meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
	meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
	cv2.imwrite(rootAdapThreshold + fileName, meanShiftAdapResult)
	
	contourPlot = prePro.contourDraw(inputImage, meanShiftAdapResult)	
	cv2.imwrite(rootContourDraw + fileName, contourPlot)
	
	print ("Preprocessing Results Written.")
	
	contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult)
	boundBoxContour = grayScaleInput.copy()
	counter = 0
	for cnt in contours:
	    if cv2.contourArea(cnt)>20:
		    print("Processing Contour no.", str(counter))
		    [x, y, w, h] = cv2.boundingRect(cnt)
		    extendBBox = 5
def processAndClassify(frame,networkTopology, network,trainingParameters):
    objects = ['basket', 'kettle', 'milk', 'mug', 'Background'];
    #'coffeemug', 'kettleBackground','milkcartonBackground','trashcanBackground', 'mugBackground',
    backgroundClass = 3
    predictionArray = []
    centroidArray   = []
    labels = []
	# Convert the image into a grayscale image
    framecopy = frame.copy()
    #grayScaleInput = cv2.cvtColor(framecopy, cv2.COLOR_BGR2GRAY)
	# Apply meanshift on the RGB image
    meanShiftResult = prePro.meanShift(np.uint8(framecopy))
    #plt.imshow(meanShiftResult)
	# Convert the result of the Mean shifted image into Grayscale
    meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
	# Apply adaptive thresholding on the resulting greyscale image
    meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
#    kernel = np.ones((5,5),np.uint8)
#    opening = cv2.dilate(meanShiftAdapResult,kernel,iterations=1)
	# Draw Contours on the Input image with results from the meanshift
	# Find the contours on the mean shifted image
    contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult)

    ## Use Histogram equalabs
    #boundingBoxContour = opening
    boundBoxContour = framecopy.copy()
    #boundBoxContour = cv2.equalizeHist(grayScaleInput.copy())
    #heatmap = frame.copy()
    #heatmapFromZeros = np.zeros(np.shape(frame))
    count = 0
	# For each contour
    for cnt in contours:
        prediction = None
        # If the area covered by the contour is greater than 500 pixels
        if cv2.contourArea(cnt)>500:
            # Get the bounding box of the contour
            [x, y, w, h] = cv2.boundingRect(cnt)
            # Get the moments of the each contour for computing the centroid of the contour
            moments = cv2.moments(cnt)
            if moments['m00']!=0:
                cx = int(moments['m10']/moments['m00'])         # cx = M10/M00
                cy = int(moments['m01']/moments['m00'])         # cy = M01/M00
                centroid = (cx,cy)
                # cx,cy are the centroid of the contour
                extendBBox20 = 20
                extendBBox10 = 10
                left = 0
                right = 0
                top = 0
                bottom = 0

#
		 #Extend it by 10 pixels to avoid missing the key points on the edges
                if x-extendBBox20 > 0:
                    left = x-extendBBox20
                elif x-extendBBox10 > 0:
                    left = x-extendBBox10
                else:
                    left = x
                if y-extendBBox20 > 0:
                    top = y-extendBBox20
                elif y-extendBBox10 > 0:
                    top = y-extendBBox10
                else:
                    top = y
                if x+w+extendBBox20 < boundBoxContour.shape[0]:
                    right = x+w+extendBBox20
                elif x+w+extendBBox10 < boundBoxContour.shape[0]:
                    right = x+w+extendBBox10
                else:
                    right = x+w
                if y+h+extendBBox20 < boundBoxContour.shape[1]:
                    bottom = y+h+extendBBox20
                elif y+h+extendBBox10 < boundBoxContour.shape[1]:
                    bottom = y+h+extendBBox10
                else:
                    bottom = y+h
                roiImage = boundBoxContour[top:bottom,left:right]
                #roiImage = boundBoxContour[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox]
                #roiImageFiltered = cv2.equalizeHist(roiImage)
                roiImageFiltered = cv2.resize(roiImage,(100,100))

                count +=1

                roiImageFiltered,roiImageFilteredframe = DataUtil.prepareDataLive(roiImageFiltered, DataUtil.DATA_MODALITY["Image"], networkTopology[6][0][0][4])
                prediction = MCCNN.classify(network[len(network)-1],[roiImageFiltered],trainingParameters[4])[0]



                if prediction < backgroundClass and prediction != 1:
                    predictionArray.append(prediction)
                    centroidArray.append(centroid)
                    labels.append(objects[np.int(prediction)])

                #heatmap[y:y+h,x:x+w] = prediction
                #heatmapFromZeros[y:y+h,x:x+w] = prediction
                ####################  Code using SIFT/ORB Features  ###########################
			# Detect the corner key points
#                kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered)
#
#                # Use the ORB feature detector and descriptor on the contour
#                kp, des, roiKeyPointImage = detDes.featureDetectDesSIFT(roiImageFiltered, kp)
#                if np.size(kp)>0:
#                   histPoints = tH.histogramContour(des,codeBookCenters)
#                   prediction = tC.classify(histPoints, svm)


                   #print prediction
				## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid
        #heatmapFromZeros.convertTo(heatmap, cv2.CV_8UC1)
        #plt.imshow(heatmapFromZeros)
    return predictionArray, centroidArray,labels
def processAndClassify(frame,codeBookCenters, svm):
    objects = ['waterkettle', 'milkcarton', 'trashcan', 'coffeemug', 'kettleBackground','milkcartonBackground','trashcanBackground', 'mugBackground', 'Background'];
    backgroundClass = 10
    predictionArray = []
    centroidArray   = []
    labels = []
	# Convert the image into a grayscale image
    framecopy = frame.copy()
    grayScaleInput = cv2.cvtColor(framecopy, cv2.COLOR_BGR2GRAY)
	# Apply meanshift on the RGB image
    meanShiftResult = prePro.meanShift(np.uint8(framecopy))
    #plt.imshow(meanShiftResult)
	# Convert the result of the Mean shifted image into Grayscale
    meanShiftGray = cv2.cvtColor(meanShiftResult, cv2.COLOR_BGR2GRAY)
	# Apply adaptive thresholding on the resulting greyscale image
    meanShiftAdapResult = prePro.adapThresh(meanShiftGray)
#    kernel = np.ones((5,5),np.uint8)
#    opening = cv2.dilate(meanShiftAdapResult,kernel,iterations=1)
	# Draw Contours on the Input image with results from the meanshift 
	# Find the contours on the mean shifted image
    contours, hierarchy = prePro.contourFindFull(meanShiftAdapResult)
    
    ## Use Histogram equalabs
    #boundingBoxContour = opening
    boundBoxContour = grayScaleInput.copy()
    #boundBoxContour = cv2.equalizeHist(grayScaleInput.copy())
    
    count = 0
	# For each contour
    for cnt in contours:
        # If the area covered by the contour is greater than 500 pixels
        if cv2.contourArea(cnt)>500:
            # Get the bounding box of the contour
            [x, y, w, h] = cv2.boundingRect(cnt)
            # Get the moments of the each contour for computing the centroid of the contour
            moments = cv2.moments(cnt)
            if moments['m00']!=0:
                cx = int(moments['m10']/moments['m00'])         # cx = M10/M00
                cy = int(moments['m01']/moments['m00'])         # cy = M01/M00
                centroid = (cx,cy)
                # cx,cy are the centroid of the contour
                extendBBox20 = 20
                extendBBox10 = 10
                left = 0
                right = 0
                top = 0
                bottom = 0
            
#                
		 #Extend it by 10 pixels to avoid missing the key points on the edges
                if x-extendBBox20 > 0:
                    left = x-extendBBox20
                elif x-extendBBox10 > 0:
                    left = x-extendBBox10
                else:
                    left = x
                if y-extendBBox20 > 0:
                    top = y-extendBBox20
                elif y-extendBBox10 > 0:
                    top = y-extendBBox10
                else:
                    top = y
                if x+w+extendBBox20 < boundBoxContour.shape[0]:
                    right = x+w+extendBBox20
                elif x+w+extendBBox10 < boundBoxContour.shape[0]:
                    right = x+w+extendBBox10
                else:
                    right = x+w
                if y+h+extendBBox20 < boundBoxContour.shape[1]:
                    bottom = y+h+extendBBox20
                elif y+h+extendBBox10 < boundBoxContour.shape[1]:
                    bottom = y+h+extendBBox10
                else:
                    bottom = y+h
                roiImage = boundBoxContour[top:bottom,left:right]
                #roiImage = boundBoxContour[y-extendBBox:y+h+extendBBox, x-extendBBox:x+w+extendBBox]
                #roiImageFiltered = cv2.equalizeHist(roiImage)
                roiImageFiltered = roiImage
                count +=1
                
			# Detect the corner key points
                kp, roiKeyPointImage = detDes.featureDetectCorner(roiImageFiltered)
                
                # Use the ORB feature detector and descriptor on the contour
                kp, des, roiKeyPointImage = detDes.featureDescriptorORB(roiImageFiltered, kp)                
                if np.size(kp)>0:
                   histPoints = tH.histogramContour(des,codeBookCenters)
                   prediction = tC.classify(histPoints, svm)
                   

                   #print prediction
				## If the predicted class is not the background class then add the prediction to the prediction array and get its centroid
                   if prediction < backgroundClass:
                       predictionArray.append(prediction)
                       centroidArray.append(centroid)
                       labels.append(objects[np.int(prediction)])
                       
    return predictionArray, centroidArray,labels