def get_count(self, sf, ROI, CPI, parameters): glint_CPI = copy.deepcopy(CPI) preprocess_glint = preprocess(None, sf, glint_CPI, parameters['blur'], parameters['canny']) self.H_count = preprocess_glint.g_count(ROI, glint_CPI, parameters, self.Video)
def get_blur(self, sf, CPI, parameters, ROI_pupil, ROI_glint): pre_pupil_blur = preprocess(None, sf, CPI, parameters['blur'], parameters['canny']) self.pupil_blur = pre_pupil_blur.anal_blur(ROI_pupil, ROI_glint, self.Video)
def glint_threshold(self, center, sf, CPI, parameters): pre_glint_threshold = preprocess(center, sf, CPI, parameters['blur'], parameters['canny']) return pre_glint_threshold.d_glint()
def pupil_threshold(self, center, sf, CPI, parameters): pre_pupil_threshold = preprocess(center, sf, CPI, parameters['blur'], parameters['canny']) return pre_pupil_threshold.start()
import fileUtils as fu import logger as lg parser = argparse.ArgumentParser() parser.add_argument('-d', '--dset') parser.add_argument('-a', '--algo') # parser.add_argument('-r', action='store_true') args = parser.parse_args() cfg.config(args.dset, args.algo) # cfg.config('energydata_complete') # cfg.config('peugeot_207_01') lg.initLogger(cfg.ds_name, cfg.algo) X, y = pp.preprocess('../datasets/' + cfg.ds_name + '.csv', cfg.delimiter, cfg.skiprows, cfg.endColumn, startColumn= cfg.startColumn, targetColumn = cfg.targetColumn, pca = cfg.pca, decimal = cfg.decimal) train_size = None if cfg.algo.lower() == 'k-nn': if cfg.training_set_cap != None: if X.shape[0] * (1 - cfg.test_size) > cfg.training_set_cap: train_size = cfg.training_set_cap / X.shape[0] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_size, test_size=cfg.test_size, random_state=1) fu.cleanSIDirs('./out/') if cfg.algo.lower() == 'ann': import ANN as ann ann.process(X_train, X_test, y_train, y_test) elif cfg.algo.lower() == 'k-nn': import KNN as knn knn.process(X_train, X_test, y_train, y_test)
model = crnn.CRNN(32, 1, 37, 256) if torch.cuda.is_available(): model = model.cuda() print('loading pretrained model from %s' % model_path) model.load_state_dict(torch.load(model_path)) alphabet = '012345678946066796176100049157000462' converter = utils.strLabelConverter(alphabet) transformer = dataset.resizeNormalize((100, 32)) path = input("Enter the path:") for i in os.listdir(path): img_path = path + '/' + i image = preprocess(img_path) image = Image.open(img_path).convert('L') image = transformer(image) if torch.cuda.is_available(): image = image.cuda() image = image.view(1, *image.size()) image = Variable(image) model.eval() preds = model(image) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) preds_size = Variable(torch.IntTensor([preds.size(0)])) sim_pred = converter.decode(preds.data, preds_size.data, raw=False)