示例#1
0
def test_correc():
    x = np.arange(1, 6)
    # Example 1:
    theta1 = np.array([5, 0])
    assert np.equal(simple_predict(x, theta1), np.array([5., 5., 5., 5.,
                                                         5.])).all()
    # Do you understand why y_hat contains only 5's here?

    # Example 2:
    theta2 = np.array([0, 1])
    assert (simple_predict(x, theta2) == np.array([1., 2., 3., 4., 5.])).all()
    # Do you understand why y_hat == x here?

    # Example 3:
    theta3 = np.array([5, 3])
    assert (simple_predict(x, theta3) == np.array([8., 11., 14., 17.,
                                                   20.])).all()

    # Example 4:
    theta4 = np.array([-3, 1])
    assert (simple_predict(x, theta4) == np.array([-2., -1., 0., 1.,
                                                   2.])).all()
示例#2
0
def plot(x, y, theta):
    """Plot the data and prediction line from three non-empty numpy.ndarray.
    Args:
    x: has to be an numpy.ndarray, a vector of dimension m * 1.
    y: has to be an numpy.ndarray, a vector of dimension m * 1.
    theta: has to be an numpy.ndarray, a vector of dimension 2 * 1.
    Returns:
    Nothing.
    Raises:
    This function should not raise any Exceptions.
    """
    y1 = simple_predict(x, theta)
    plt.plot(x, y1, 'r')
    plt.plot(x, y, 'bo')
    plt.show()
def gradient(x, y, theta):
    """Computes a gradient vector from three non-empty numpy.ndarray, without any for-loop. The
	􏰀→ three arrays must have the compatible dimensions.
	Args:
	x: has to be an numpy.ndarray, a matrix of dimension m * n.
	y: has to be an numpy.ndarray, a vector of dimension m * 1.
	theta: has to be an numpy.ndarray, a vector (n +1) * 1.
	Returns:
	The gradient as a numpy.ndarray, a vector of dimensions n * 1, containg the result of the
	􏰀→ formula for all j.
	None if x, y, or theta are empty numpy.ndarray.
	None if x, y and theta do not have compatible dimensions.
	Raises:
	This function should not raise any Exception.
	"""
    if len(x) < 1 or len(y) < 1 or len(
            theta) < 1 or x is None or y is None or theta is None or x.shape[
                0] != y.shape[0]:
        return None
    y_hat = simple_predict(x, theta)
    gr_vec = (np.matmul(add_intercept(x).transpose(),
                        (y_hat - y))) / y.shape[0]
    return gr_vec
示例#4
0
#!/usr/bin/python3
import numpy as np
from prediction import simple_predict

x = np.arange(1, 6)

print(simple_predict(x, np.array([5, 0])))
print(simple_predict(x, np.array([0, 1])))
print(simple_predict(x, np.array([5, 3])))
print(simple_predict(x, np.array([-3, 1])))
示例#5
0
import numpy as np
from prediction import simple_predict

x = np.arange(1,6)
theta1 = np.array([5, 0])
print(simple_predict(x, theta1))
print(np.array([1., 2., 3., 4., 5.]))
示例#6
0
import numpy as np
from prediction import simple_predict

x = np.arange(1, 13).reshape((4, 3))

# Example 1:
theta1 = np.array([5, 0, 0, 0])
print(simple_predict(x, theta1))
# Ouput:
# array([5., 5., 5., 5.])
# Do you understand why y_hat contains only 5's here?

# Example 2:
theta2 = np.array([0, 1, 0, 0])
print(simple_predict(x, theta2))
# Output:
# array([ 1.,  4.,  7., 10.])
# Do you understand why y_hat == x[:,0] here?

# Example 3:
theta3 = np.array([-1.5, 0.6, 2.3, 1.98])
print(simple_predict(x, theta3))
# Output:
# array([ 9.64, 24.28, 38.92, 53.56])

# Example 4:
theta4 = np.array([-3, 1, 2, 3.5])
print(simple_predict(x, theta4))
# Output:
# array([12.5, 32. , 51.5, 71. ])
示例#7
0
def test_better():
    x = np.arange(1, 6)
    # Example 1:
    theta1 = np.array([5, 1])
    assert np.equal(simple_predict(x, theta1), np.array([6., 7., 8., 9.,
                                                         10.])).all()
示例#8
0
#!/usr/bin/env python3
from prediction import simple_predict
import numpy as np

x = np.arange(1, 6)

#Example 1:
theta1 = np.array([5, 0])
p = simple_predict(x, theta1)
assert np.array_equal(p, [5., 5., 5., 5., 5.])
print(p)

#Example 2:
theta2 = np.array([0, 1])
p = simple_predict(x, theta2)
assert np.array_equal(p, [1., 2., 3., 4., 5.])
print(p)

#Example 3:
theta3 = np.array([5, 3])
p = simple_predict(x, theta3)
assert np.array_equal(p, [8., 11., 14., 17., 20.])
print(p)

#Example 4:
theta4 = np.array([-3, 1])
p = simple_predict(x, theta4)
assert np.array_equal(p, [-2., -1., 0., 1., 2.])
print(p)