示例#1
0
def pronostico_normal(data,dirFestivos,dataMet,estacion,contaminant,dirData,dirTrain):
    data = data.reset_index(drop=True)
    data = separateDate(data)
    data = totalUnionData(data, dirFestivos)
    data = df.concat([data, dataMet], axis=1, join='inner')
    #data =  data.merge(dataMet, how='left', on='fecha')
    data = filterData(data, dirData + estacion + "_" + contaminant + ".csv")
    data = data.fillna(value=-1)
    index = data.index.values
    arrayPred = []
    for x in index:
        pred = data.ix[x].values
        valPred = pred[2:]
        valNorm = pre.normalize(valPred, estacion, contaminant, dirData)
        arrayPred.append(convert(valNorm))
    result = pre.prediction(estacion, contaminant, arrayPred, dirTrain, dirData)
    columnContaminant = findTable2(contaminant)
    real = pre.desNorm(result, estacion, contaminant, dirData, columnContaminant+ '_')
    for xs in range(len(real)):
        fechaPronostico = data['fecha'].iloc[xs].values
        fechaPronostico = datetime.strptime(fechaPronostico[1], '%Y-%m-%d %H:%M:%S')
        fechaPronostico = fechaPronostico - timedelta(days=1)
        pronostico = real[xs]
        guardarPrediccion(estacion, fechaPronostico, [pronostico],contaminant,3)
    return 1
示例#2
0
def useClimatology(contaminant, estacion, fechaInicio, fechaFinal, dataMet,dirData,dirTrain,dirFestivos):
    """
    function to make the forecast using climatologies

    :param contaminant: name of the pollutant
    :type contaminant: String
    :param estacion: name of the weather station
    :type estacion: String
    :param fechaInicio: range of data wit wich the vaues of tue query are extracted
    :type fechaInicio: datetime
    :param fechaFinal: range of data wit wich the vaues of tue query are extracted
    :type fechaFinal: datetime
    :param dataMet: dataframe with the climatological information
    :type dataMet: DataFrame
    """
    data = fd.get_climatology(fechaInicio, fechaFinal, estacion)
    data = makeDates(fechaInicio,fechaFinal,data)
    #sys.out
    data = data.reset_index(drop=True)
    data = separateDate(data)
    data = totalUnionData(data, dirFestivos)
    data = df.concat([data, dataMet], axis=1, join='inner')
    #data = data.merge(dataMet, how='left', on='fecha')
    data = data.fillna(value=-1)
    data = filterData(data, dirData + estacion + "_" + contaminant + ".csv")
    data = data.fillna(value=-1)
    index = data.index.values
    arrayPred = []
    for x in index:
        pred = data.ix[x].values
        valPred = pred[2:]
        valNorm = pre.normalize(valPred, estacion, contaminant, dirData)
        arrayPred.append(convert(valNorm))
    result = pre.prediction(estacion, contaminant, arrayPred, dirTrain, dirData)
    columnContaminant = findTable2(contaminant)
    real = pre.desNorm(result, estacion, contaminant, dirData, columnContaminant+ '_')
    fechaPronostico = fechaInicio
    for xs in real:
        print(fechaPronostico)
        fechaUpdate = fechaPronostico
        fechaUpdate = fechaUpdate - timedelta(days=1)
        guardarPrediccion(estacion, fechaUpdate, [xs], contaminant,5)
        fechaPronostico = fechaPronostico + timedelta(hours=1)
    print('Climatologia:' + estacion)
示例#3
0
def forecastDateKeras(station, dirData, dirrDataC, dirTrain, contaminant, columnContaminant, fechaInicio, fechaFin, dirTotalCsv):
    sta = station
    name = sta + '_' + contaminant
    tempData  = baseContaminantes(fechaInicio, fechaFin, station, contaminant)
    if tempData.empty:
        dataBackup = back(dirData, contaminant)
        data = dataBackup
        data = data.fillna(value=-1)
        data = filterData(data, dirData + name + ".csv")
        data = data.fillna(value=-1)
        temp = data.ix[0].values
        temp = temp[1:]
        dataPred = pre.normalize(temp, sta, contaminant, dirData)
        dataPred = convert(dataPred)
        prediccion = preK.prediction(sta, contaminant, [dataPred], dirTrain, dirData)
    else:
        data =  tempData.dropna(axis=1, how = 'all')
        data = data.fillna(value = -1)
        data = data.reset_index(drop = True)
        data = separateDate(data)
        data = unionData(data,dirTotalCsv)
        data = data.drop_duplicates(keep='first')
        data = filterData(data,dirData + name + '.csv')
        data = data.fillna(value = -1)
        dataTemp = data['fecha']
        index = data.index.values
        arrayPred = []
        for x in index:
            pred = data.ix[x].values
            valPred = pred[1:]
            valNorm = pre.normalize(valPred, sta,  contaminant, dirData)
            arrayPred.append(convert(valNorm))
        result = pre.prediction(sta,contaminant,arrayPred, dirTrain,dirData)
        real = desNorm(result, sta, contaminant, dirData, columnContaminant)
        dataPrediccion =  real
        savePrediccion1(station, dataPrediccion, contaminant, dataTemp)
示例#4
0
def prediccion(estacion, data, dirData, dirTrain, contaminant):
    """
    function that sends the data to the neural network for the prediction of the pollutant

    :param estacion: name the station
    :type estacion: String
    :param data: information for the prediction
    :type data : list float32
    :param dirData: address of the files with training information
    :type dirData: String
    :param dirTrain: address of the training files of the neural network
    :type dirTrain: String
    :return: prdiction values
    :type return : float32
    """
    temp = data.ix[0].values
    temp = temp[1:]
    dataPred = pre.normalize(temp, estacion, contaminant, dirData)
    dataPred = convert(dataPred)
    prediccion = pre.prediction(estacion, contaminant, [dataPred], dirTrain, dirData)
    print(prediccion)
    columnContaminant = findTable2(contaminant)
    prediccion1 = pre.desNorm(prediccion, estacion, contaminant, dirData, columnContaminant + '_')
    return prediccion1
示例#5
0
def dataCorrelacion(contaminant, estacion, fechaInicio, fechaFin, dataMet,dirData,dirTrain, dirFestivos):
    data_Corr = df.read_csv('/media/storageBK/AirQualityForecast/Scripts/ContaminationForecast/Data/Correlacion_table.csv', index_col=0)
    corr_est = data_Corr[estacion].sort_values(ascending=False)
    estacion_corr = corr_est.index[1]
    print('Estacion usada para la correlacion: ' + estacion_corr)
    data = fd.readData_corr(fechaInicio, fechaFin, [estacion_corr], contaminant)
    if data.empty:
        print('Estacion: ' + estacion_corr + ' no tiene datos')
        estacion_corr = corr_est.index[2]
        data = fd.readData_corr(fechaInicio, fechaFin, [estacion_corr], contaminant)
        print('Estacion usada para la correlacion: ' + estacion_corr)
        if data.empty:
            print('Estacion: ' + estacion_corr + ' no tiene datos')
            useClimatology(contaminant, estacion, fechaInicio, fechaFin, dataMet,dirData,dirTrain, dirFestivos)
        else:
            data = data.drop_duplicates(keep='first')
            data = data.reset_index(drop=True)
            index_values = data.columns.values[1:]
            for xs in index_values:
                data.rename(columns={xs:xs.replace(estacion_corr.lower(), estacion.lower())}, inplace = True)
            data = separateDate(data)
            data = totalUnionData(data, dirFestivos)
            data = df.concat([data, dataMet], axis=1, join='inner')
            print(data)
            #data =  data.merge(dataMet, how='left', on='fecha')
            data = filterData(data, dirData + estacion + "_" + contaminant + ".csv")
            data = data.fillna(value=-1)
            index = data.index.values
            arrayPred = []
            for x in index:
                pred = data.ix[x].values
                valPred = pred[2:]
                valNorm = pre.normalize(valPred, estacion, contaminant, dirData)
                arrayPred.append(convert(valNorm))
            result = pre.prediction(estacion, contaminant, arrayPred, dirTrain, dirData)
            columnContaminant = findTable2(contaminant)
            real = pre.desNorm(result, estacion, contaminant, dirData, columnContaminant+ '_')
            for xs in range(len(real)):
                fechaPronostico = data['fecha'].iloc[xs].values
                fechaPronostico = datetime.strptime(fechaPronostico[1], '%Y-%m-%d %H:%M:%S')
                fechaPronostico1 =  fechaPronostico - timedelta(days=1)
                pronostico = real[xs]
                guardarPrediccion(estacion, fechaPronostico1, [pronostico],contaminant,5)
    else:
        data = data.drop_duplicates(keep='first')
        data = data.reset_index(drop=True)
        index_values = data.columns.values[1:]
        for xs in index_values:
            data.rename(columns={xs:xs.replace(estacion_corr.lower(), estacion.lower())}, inplace = True)
        data = separateDate(data)
        data = totalUnionData(data, dirFestivos)
        data = df.concat([data, dataMet], axis=1, join='inner')
        print(data)
        #data =  data.merge(dataMet, how='left', on='fecha')
        data = filterData(data, dirData + estacion + "_" + contaminant + ".csv")
        data = data.fillna(value=-1)
        index = data.index.values
        arrayPred = []
        for x in index:
            pred = data.ix[x].values
            valPred = pred[2:]
            valNorm = pre.normalize(valPred, estacion, contaminant, dirData)
            arrayPred.append(convert(valNorm))
        result = pre.prediction(estacion, contaminant, arrayPred, dirTrain, dirData)
        columnContaminant = findTable2(contaminant)
        real = pre.desNorm(result, estacion, contaminant, dirData, columnContaminant+ '_')
        for xs in range(len(real)):
            fechaPronostico = data['fecha'].iloc[xs].values
            fechaPronostico = datetime.strptime(fechaPronostico[1], '%Y-%m-%d %H:%M:%S')
            fechaPronostico1 =  fechaPronostico - timedelta(days=1)
            pronostico = real[xs]
            guardarPrediccion(estacion, fechaPronostico1, [pronostico],contaminant,5)
示例#6
0
def trialk(station, dirData, dirrDataC, dirGraficas, dirTrain, contaminant, columnContaminant, fechaInicio, fechaFin):
    """
    function to make the forecast of a whole year and graph it

    :param station: name the station
    :type station: String
    :param dirData: address of the files with training information
    :type dirData: String
    :param dirGraficas: address where the graphics are saved
    :type dirGraficas: String
    :param dirTrain: address of the training files of the neural network
    :type dirTrain: String
    :param columnContaminant:name of the pollutant in the DataFrame
    :type columnContaminant: String
    :param fechaInicio: start date of the forecast
    :type fechaInicio: date
    :param fechaFin: end date of the forecast
    :type fechaFin: date
    """
    sta = station
    name = sta + '_' + contaminant
    temp = df.read_csv(dirrDataC + name + '.csv')  # we load the data in the Variable data
    temp = temp.fillna(value=-1.0)
    data = temp[(temp['fecha'] <= fechaFin) & (temp['fecha'] >= fechaInicio)]
    data = data.reset_index(drop=True)
    data = filterData(data, dirData + name + '.csv')
    data = data.fillna(value=-1.0)
    tempBuild = df.read_csv(dirrDataC + name + '_pred.csv')  # we load the data in the Variable build
    tempBuild = tempBuild.fillna(value=-1.0)
    build = tempBuild[(tempBuild['fecha'] <= fechaFin) & (tempBuild['fecha'] >= fechaInicio)];
    build = build.reset_index(drop=True)
    build = build.fillna(value=-1.0)
    l = xlabel(data)
    labels = l[0]
    location = l[1]
    print(labels)
    if (station == 'SAG') | (station == 'UIZ'):
        #loc = labels.index('Marzo')
        #lugar = location[loc] + 1
        #nombre = labels[loc]
        nombre = 'anio'
    else:
        print('no mes')
        #loc = labels.index('Marzo')
        #lugar = location[loc] + 1
        #nombre = labels[loc]
        nombre = 'anio'
    arrayPred = []
    nameColumn = columnContaminant +'_'+ sta + '_delta'
    inf = build[nameColumn].values
    index = data.index.values
    for x in index:
        pred = data.ix[x].values
        valPred = pred[1:]
        valNorm = pre.normalize(valPred, sta, contaminant, dirData)
        arrayPred.append(convert(valNorm))
    result = preK.prediction(sta, contaminant, arrayPred, dirTrain, dirData)
    real = desNorm(result, sta, contaminant, dirData, columnContaminant)
    #metri.append(metricas(inf, real, station))
    plt.figure(figsize=(22.2, 11.4))
    plt.plot(inf, color='tomato', linestyle="solid", marker='o', label='Valor observado.');
    plt.plot(real, color='darkgreen', linestyle='solid', marker='o', label='Pronóstico 24h NN.');
    plt.title(nombreEst(station) + ' (' + station + ') comparación de ' + contaminant+' observado vs red neuronal' + ' para la primer semana de ' + nombre + ' 2016' ,fontsize=25, y=1.1 )
    plt.xlabel('Fecha', fontsize=18)
    #n = 'Primera semana de '+nombre
    #plt.xlabel(n,fontsize=22);
    plt.ylabel('Partes por millon (PPM)', fontsize=22)
    plt.legend(loc='best')
    plt.grid(True, axis='both', alpha= 0.3, linestyle="--", which="both")
    # plt.xticks(location,labels,fontsize=8,rotation=80)
    plt.xticks(location,labels,fontsize=16,rotation=80)
    #plt.xlim(lugar,lugar+144);
    plt.axhspan(20, 40, color='lightgray', alpha=0.3)
    plt.axhspan(60, 80, color='lightgray', alpha=0.3)
    plt.axhspan(100, 120, color='lightgray', alpha=0.3)
    plt.gca().spines['bottom'].set_color('dimgray')
    plt.gca().spines['left'].set_visible(False)
    plt.gca().spines['top'].set_visible(False)
    plt.gca().spines['right'].set_visible(False)
    plt.tight_layout()
    plt.savefig(dirGraficas + station + '_' + nombre + '.png')
    plt.show();
    plt.clf();
    plt.close()