def main(argv): args = parser.parse_args(argv[1:]) batch_size = args.batch_size (train_x, train_y), (test_x, test_y), unlabeled = meo_data.load_data() # construct classifier classifier = tf.estimator.Estimator(model_fn=model.story_model, params={ 'feature_columns': fc.story_model_columns( train_x, test_x, unlabeled), 'n_classes': args.classes, }) # train model classifier.train( input_fn=lambda: meo_data.train_input_fn(train_x, train_y, batch_size), steps=args.train_steps) # evaluate and print results eval_result = classifier.evaluate( input_fn=lambda: meo_data.eval_input_fn(test_x, test_y, batch_size)) m.print_eval(eval_result) # predict classes in test data, print a random sample p.predict(classifier, test_x, test_y, unlabeled, batch_size)
def main(argv): args = parser.parse_args(argv[1:]) batch_size = args.batch_size (train_x, train_y), (test_x, test_y), unlabeled = meo_data.load_data() # construct classifier classifier = tf.estimator.Estimator( model_fn=model.story_model, params={ 'feature_columns': fc.story_model_columns(train_x, test_x, unlabeled), 'n_classes': args.classes, }) # train model classifier.train( input_fn=lambda: meo_data.train_input_fn(train_x, train_y, batch_size), steps=args.train_steps) # evaluate and print results eval_result = classifier.evaluate( input_fn=lambda: meo_data.eval_input_fn(test_x, test_y, batch_size)) m.print_eval(eval_result) # predict classes in test data, print a random sample p.predict(classifier, test_x, test_y, unlabeled, batch_size)
def predict(species, data_name): ''' This function makes use of the predictions file to predict the reliability of a given set of observations using a pre trained model. :param species: :param data_name: :return: ''' p.predict(species, data_name) cwd = os.getcwd() os.remove(os.path.join(cwd, 'temp.csv'))
def upload_file(): if request.method == 'POST': # check if the post request has the file part if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] # if user does not select file, browser also # submit an empty part without filename if file.filename == '': flash('No selected file') return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) predicts = predictions.predict( os.path.join(app.config['UPLOAD_FOLDER'], filename)) facts = get_poke_facts.get_facts(predicts[0]) print(facts) return render_template("pokemon.html", facts=facts, pokemon_name=predicts[0], image_data=predicts[1], pokemon_percentage=predicts[2], image_pokemon=predicts[3]) #return 'Jeg tror det er en: {}'.format(str(predicts[0])) return render_template("upload.html", )
def predict(): messages = request.get_json(force=True) messages = delete_empty_messages(messages) keys = list(messages.keys()) values = [messages[key] for key in keys] if values: toxicity = predictions.predict(values) toxic_messages = { keys[index]: float(toxic) for index, toxic in enumerate(toxicity) } return jsonify(toxic_messages) else: return jsonify([])
def query(): if request.method == 'GET': error = 0 error_msg = '' q = request.args.get('q') if q: result = ip_info.find_one({'ip': q}) if result: results = { 'ip': result['ip'], 'country': result['country'], 'city': result['city'], 'country_id': result['country_id'] } else: result = otx.get_indicator_details_full(IndicatorTypes.IPv4, q) if result: results = { 'ip': result['general']['indicator'], 'country': result['general']['country_name'], 'city': result['general']['city'] } ip.search_ip(q) else: results = {} error = 1 if error: city_pre = '' else: city_pre = predictions.predict(results['city']) city_pre = city_pre[0:2] result = [] for cp in city_pre: r = ip_info.find({'city': cp[0]}) for rs in r[0:10]: result.append(rs) return render_template('index.html', q=q, error=error, error_msg=error_msg, results=results, pre=result, city_pre=city_pre) else: return render_template('index.html')
def post(self, request): form = PortfolioForm(request.POST) if form.is_valid(): holding = form.cleaned_data['holding'] if holding != 0: span = 'Short-Term' else: span = 'Long-Term' #asset1 asset1 = form.cleaned_data['asset1'] name1 = dict(form.fields['asset1'].widget.choices)[asset1] weight1 = form.cleaned_data['weight1'] # asset2 asset2 = form.cleaned_data['asset2'] name2 = dict(form.fields['asset2'].widget.choices)[asset2] weight2 = form.cleaned_data['weight2'] # asset3 asset3 = form.cleaned_data['asset3'] name3 = dict(form.fields['asset3'].widget.choices)[asset3] weight3 = form.cleaned_data['weight3'] # asset4 asset4 = form.cleaned_data['asset4'] name4 = dict(form.fields['asset4'].widget.choices)[asset4] weight4 = form.cleaned_data['weight4'] # Short-term holding if span == 'Short-Term': start_date = datetime.today() + timedelta(days=-100) end_date = datetime.today() #holidays = get_calendar('USFederalHolidayCalendar').holidays(start_date, end_date) #period = [x for x in period if x not in holidays.date] #period = pd.DatetimeIndex(period) prices1 = web.DataReader(asset1, 'yahoo', start_date, end_date) df1 = pd.DataFrame(predict(prices1, holding)) df1.rename(columns={df1.columns[0]: 'Close1'}, inplace=True) prices2 = web.DataReader(asset2, 'yahoo', start_date, end_date) df2 = pd.DataFrame(predict(prices2, holding)) df2.rename(columns={df2.columns[0]: 'Close2'}, inplace=True) prices3 = web.DataReader(asset3, 'yahoo', start_date, end_date) df3 = pd.DataFrame(predict(prices3, holding)) df3.rename(columns={df3.columns[0]: 'Close3'}, inplace=True) prices4 = web.DataReader(asset4, 'yahoo', start_date, end_date) df4 = pd.DataFrame(predict(prices4, holding)) df4.rename(columns={df4.columns[0]: 'Close4'}, inplace=True) #Long-term Holding else: start_date = form.cleaned_data['start_date'] end_date = form.cleaned_data['end_date'] df1 = web.DataReader(asset1, 'yahoo', start_date, end_date) df2 = web.DataReader(asset2, 'yahoo', start_date, end_date) df3 = web.DataReader(asset3, 'yahoo', start_date, end_date) df4 = web.DataReader(asset4, 'yahoo', start_date, end_date) df1 = pd.DataFrame({'Close1': df1['Close']}) df2 = pd.DataFrame({'Close2': df2['Close']}) df3 = pd.DataFrame({'Close3': df3['Close']}) df4 = pd.DataFrame({'Close4': df4['Close']}) portfolio_prices = df1.merge(df2, left_index=True, right_index=True) \ .merge(df3, left_index=True, right_index=True) \ .merge(df4, left_index=True, right_index=True) print portfolio_prices period = pd.bdate_range(start_date, end_date).date weights = [] weights.append(weight1) weights.append(weight2) weights.append(weight3) weights.append(weight4) opti_model = MarkowitzOptimize(portfolio_prices, weights) new_weights = opti_model.minimizeSharpeRatio() attributes = list(portfolio_prices.columns.values) return_prices = portfolio_prices / portfolio_prices.iloc[0] return1 = return_prices[attributes].mul(weights).sum(1) portfolio = pd.DataFrame(portfolio_prices) attributes = list(portfolio.columns.values) portfolio = portfolio[attributes].sum(1) return2 = portfolio / portfolio.iloc[0] ts_list = period.tolist() date_string = [str(date) for date in ts_list] args = { 'form': form, 'start_date': start_date, 'end_date': end_date, 'name1': name1, 'name2': name2, 'name3': name3, 'name4': name4, 'new_weights1': new_weights[0], 'new_weights2': new_weights[1], 'new_weights3': new_weights[2], 'new_weights4': new_weights[3], 'values1': return1.values.tolist(), 'values2': return2.values.tolist(), 'dates': date_string } return render(request, 'portimize/results.html', args)
def predict(): data = request.json return predictions.predict(data)
description= 'Query for twitter mining, can be "search" or @username or #hashtag') parser.add_argument('-q', '--query', help='Add your query', required=False) parser.add_argument('-d', '--debug', help='Debug', required=False) parser.add_argument('--all', help='Model Selection', required=False, action='store_true') args = parser.parse_args() if __name__ == '__main__': if args.query is None: text = input("Enter Query: ") else: text = args.query if args.debug: debug = True if args.all: accuracy = False else: accuracy = True tweets = findTweets(text) predictions = predict(tweets[0], debug=debug, accuracy=accuracy) for t, p in zip(tweets[1], predictions): print('-' * 80) print("Tweet:") print('') print(t, " \n### Predicted Sentiment[neg, pos]: ", p) # print(predictions)
parsed = json.loads(lines[0]) return (parsed) params = read_in() #물가 예상 price_index = pr.index_predict(params["startdate"], params["year"], params["price_index"]) price_index.name = "price_index" solar_index = pr.index_predict(params["startdate"], params["year"], params["solar_index"]) solar_index.name = "solar_index" #수입예상 및 전체적인 지표구성 revenue = pr.predict(params["scene"], params["startdate"], params["year"]) revenue["rec_price"] = 100 revenue["days"] = revenue.index.day start = pd.to_datetime(params["startdate"], format='%Y-%m-%d', errors='ignore') #초기 기간 설정 startday = start.date().timetuple() revenue.days[0] = revenue.days[0] - startday.tm_mday revenue.days[revenue.shape[0] - 1] = startday.tm_mday revenue = pd.concat([revenue, price_index, solar_index], axis=1) revenue["generation"] = revenue['days'] * params['size'] * params[ 'average_time'] * revenue["solar_index"] revenue['smp_revenue'] = revenue['smp_price'] * revenue['generation'] revenue['rec_revenue'] = revenue['rec_price'] * revenue['generation'] * params[ 'weight'] revenue["smp_revenue"] = revenue["smp_revenue"].astype(int)
# Init file # All occurs here # Execute this file tu start your machine import sys import training import predictions # Main Program if __name__ == '__main__': X_train, X_validation, Y_train, Y_validation = training.evaluate_data() if 'plot' in str(sys.argv): training.show_plots() if 'predict' in str(sys.argv): predictions.predict(X_train, X_validation, Y_train, Y_validation)
type="denac2", _timebloc=timebloc, n_scans_use=vd['num_scans_use'], _shuffle=vd['shuffle_samples'], _reduce=vd['reduced_timesteps'], _avgpath=vd['path_to_avg']) '''Callbacks and model fit''' if (vd['UseObjective'] == 0 or vd['UseObjective'] == 1): chkpt = ModelCheckpoint(vd['Modelpath'], monitor='loss', mode='min', save_best_only=True, verbose=1) lrs = LearningRateScheduler(helpers.scheduler) foo.model.fit(doo, epochs=vd['epochs'], verbose=1, callbacks=[chkpt, lrs], max_queue_size=vd['max_queue']) '''Predictions''' if (vd['UseObjective'] == 2): predict(model=foo.model, doo=doo, type=vd['UseCase'], predsavepath=vd['predsavepath'], scaler=doo.scaler) # '''Testing and Validation''' # # test(doo, type = "denac" ,model_path = "post/model_den2.h5", item = 5772)