def main():

    with Flow("combine-purpleair-sensors") as flow:
        environment = Parameter("environment", default="staging")
        start = DateTimeParameter("start")
        interval_hour = Parameter("interval_hour", default=1)
        end = DateTimeParameter("end_inclusive")

        dts = datetime_range(start, interval_hour, end)
        client = create_purpleair_archive_client(environment)

        maybe_all_sensors_processed = extract_warehouse_purpleair_processed.map(
            dt=dts, purpleair_client=unmapped(client))
        all_sensors_processed = filter_failed(maybe_all_sensors_processed)

        combined_sensors = combine_sensors(all_sensors_processed)

        blob_client = create_combined_sensors_blob_client(environment)
        load_combined_sensors(combined_sensors, blob_client)

    # Registers flow to server, which we can then deploy and run in background agents.
    # flow.register(project_name="caqi-flows")

    # Immediately executes without agents
    from datetime import datetime
    flow.run(start=datetime(2020, 11, 23, 7),
             end_inclusive=datetime(2020, 11, 25, 8))
示例#2
0
class TestDateTimeParameter:
    @prefect.task
    def return_value(x):
        return x

    with Flow("test") as dt_flow:
        dt = DateTimeParameter("dt", required=False)
        x = return_value(dt)

    def test_datetime_parameter_returns_datetimes_if_passed_datetimes(self):
        now = pendulum.now()
        state = self.dt_flow.run(dt=now)
        assert state.result[self.dt].result == now
        assert state.result[self.x].result == now

    def test_datetime_parameter_returns_datetimes_if_passed_string(self):
        now = pendulum.now()
        state = self.dt_flow.run(dt=str(now))
        assert state.result[self.dt].result == now
        assert state.result[self.x].result == now

    def test_datetime_parameter_returns_none_if_passed_none(self):
        state = self.dt_flow.run(dt=None)
        assert state.result[self.dt].result is None
        assert state.result[self.x].result is None

    def test_datetime_parameter_with_none_default(self):
        state = self.dt_flow.run()
        assert state.result[self.dt].result is None
        assert state.result[self.x].result is None
示例#3
0
    def test_datetime_parameter_returns_datetimes_with_default_string(self):
        now = pendulum.now()
        with Flow("test") as dt_flow:
            dt = DateTimeParameter("dt", default=str(now), required=False)
            x = self.return_value(dt)

        state = dt_flow.run()
        assert state.result[dt].result == now
        assert state.result[x].result == now
示例#4
0
def main():

    with Flow("reprocess-purpleair") as flow:
        environment = Parameter("environment", default="staging")
        start = DateTimeParameter("start")
        interval_hour = Parameter("interval_hour", default=1)
        end = DateTimeParameter("end_inclusive")

        dts = datetime_range(start, interval_hour, end)
        client = create_purpleair_archive_client(environment)

        all_sensors_raw = extract_warehouse_purpleair.map(
            dt=dts, purpleair_client=unmapped(client))
        all_sensors_processed = transform_all_sensors_raw.map(all_sensors_raw)
        blob_client = create_hour_blob_client.map(
            environment=unmapped(environment), dt=dts)
        load_all_sensors_processed.map(all_sensors_processed, blob_client)

    # Registers flow to server, which we can then deploy and run in background agents.
    flow.register(project_name="caqi-flows")
示例#5
0
    def test_datetime_parameter_must_have_value_or_default_when_required_is_true(
            self):
        with Flow("test") as dt_flow:
            dt = DateTimeParameter("dt", required=True)
            x = self.return_value(dt)

        with pytest.raises(
                ValueError,
                match=
                "Flow.run did not receive the following required parameters: dt",
        ):
            _ = dt_flow.run()
示例#6
0
class TestDateTimeParameter:
    @prefect.task
    def return_value(x):
        return x

    with Flow("test") as dt_flow:
        dt = DateTimeParameter("dt", required=False)
        x = return_value(dt)

    def test_datetime_parameter_returns_datetimes_if_passed_datetimes(self):
        now = pendulum.now()
        state = self.dt_flow.run(dt=now)
        assert state.result[self.dt].result == now
        assert state.result[self.x].result == now

    def test_datetime_parameter_returns_datetimes_if_passed_string(self):
        now = pendulum.now()
        state = self.dt_flow.run(dt=str(now))
        assert state.result[self.dt].result == now
        assert state.result[self.x].result == now

    def test_datetime_parameter_returns_none_if_passed_none(self):
        state = self.dt_flow.run(dt=None)
        assert state.result[self.dt].result is None
        assert state.result[self.x].result is None

    def test_datetime_parameter_with_none_default(self):
        state = self.dt_flow.run()
        assert state.result[self.dt].result is None
        assert state.result[self.x].result is None

    def test_datetime_parameter_returns_datetimes_with_default_string(self):
        now = pendulum.now()
        with Flow("test") as dt_flow:
            dt = DateTimeParameter("dt", default=str(now), required=False)
            x = self.return_value(dt)

        state = dt_flow.run()
        assert state.result[dt].result == now
        assert state.result[x].result == now

    def test_datetime_parameter_must_have_value_or_default_when_required_is_true(
            self):
        with Flow("test") as dt_flow:
            dt = DateTimeParameter("dt", required=True)
            x = self.return_value(dt)

        with pytest.raises(
                ValueError,
                match=
                "Flow.run did not receive the following required parameters: dt",
        ):
            _ = dt_flow.run()
示例#7
0
def main():

    with Flow("reprocess-purpleair-single") as flow:
        environment = Parameter("environment", default="staging")
        dt = DateTimeParameter("dt")
        client = create_purpleair_archive_client(environment)
        all_sensors_raw = extract_warehouse_purpleair(dt=dt, purpleair_client=client)
        all_sensors_processed = transform_all_sensors_raw(all_sensors_raw)
        blob_client = create_hour_blob_client(environment=environment, dt=dt)
        load_all_sensors_processed(all_sensors_processed, blob_client)

    # Registers flow to server, which we can then deploy and run in background agents.
    flow.register(project_name="caqi-flows")
示例#8
0
def main():

    with Flow("mean-aqi") as flow:
        environment = Parameter("environment", default="staging")
        start = DateTimeParameter("start")
        interval_hour = Parameter("interval_hour", default=1)
        end = DateTimeParameter("end_inclusive")

        dts = datetime_range(start, interval_hour, end)
        client = create_purpleair_archive_client(environment)

        maybe_all_sensors_processed = extract_warehouse_purpleair_processed.map(dt=dts, purpleair_client=unmapped(client))
        all_sensors_processed = filter_failed(maybe_all_sensors_processed)
        
        mean_aqi = transform_processed_mean.map(all_sensors_processed)
        combined_mean_aqi = combine_mean_aqis(mean_aqi)
        blob_client = create_mean_aqi_blob_client(environment)
        load_mean_aqi(combined_mean_aqi, blob_client)
        # blob_client = create_hour_blob_client.map(environment=unmapped(environment), dt=dts)
        # load_all_sensors_processed.map(all_sensors_processed, blob_client)

    # Registers flow to server, which we can then deploy and run in background agents.
    flow.register(project_name="caqi-flows")