示例#1
0
    def _get_material_bioflows_for_bev(self):
        """
        Obtain bioflow ids for *interesting* materials.
        These are the top bioflows in the ILCD materials
        characterization method for an BEV activity.
        """

        method = ('ILCD 2.0 2018 midpoint',
                  'resources', 'minerals and metals')
        year = self.years[0]
        act_str = "transport, passenger car, fleet average, battery electric, {}".format(year)

        # upstream material demands are the same for all regions
        # so we can use GLO here
        act = Activity(
            Act.get((Act.name == act_str)
                    & (Act.database == eidb_label(
                        self.model, self.scenario, year))
                    & (Act.location == "EUR")))
        lca = bw.LCA({act: 1}, method=method)
        lca.lci()
        lca.lcia()

        inv_bio = {value: key for key, value in lca.biosphere_dict.items()}

        ca = ContributionAnalysis()
        ef_contrib = ca.top_emissions(lca.characterized_inventory)
        return [inv_bio[int(el[1])] for el in ef_contrib]
示例#2
0
    def report_direct_emissions(self):
        """
        Report the direct (exhaust) emissions of the LDV fleet.
        """

        df = self.data[self.data.Variable.isin(self.variables)]

        df.set_index(["Year", "Region", "Variable"], inplace=True)

        start = time.time()
        result = {}
        # calc score
        for year in self.years:
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            for region in self.regions:
                for var in (df.loc[(year, region)]
                            .index.get_level_values(0)
                            .unique()):
                    for act, share in self._act_from_variable(
                            var, db, year, region).items():
                        for ex in act.biosphere():
                            result[(year, region, ex["name"])] = (
                                result.get((year, region, ex["name"]), 0)
                                + ex["amount"] * share * df.loc[(year, region, var), "value"])

        df_result = pd.Series(result)
        print("Calculation took {} seconds.".format(time.time() - start))
        return df_result * 1e9  # kg
示例#3
0
    def _sum_variables_and_add_scores(self, market, variables):
        """
        Sum the variables that belong to the market
        and calculate the LCA scores for all years,
        regions and methods.
        """
        df = self.data[self.data.Variable.isin(variables)]\
                 .groupby(["Region", "Year"])\
                 .sum()
        df.reset_index(inplace=True)
        df["Market"] = market

        # add methods dimension & score column
        methods_df = pd.DataFrame({"Method": self.methods, "Market": market})
        df = df.merge(methods_df)
        df.loc[:, "score"] = 0.
        df.loc[:, "score_direct"] = 0.
        df.set_index(["Year", "Region", "Method"], inplace=True)

        # calc score
        for year in self.years:
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            # database indexes of powerplants
            pps = [
                pp for pp in db
                if pp["unit"] == "kilowatt hour" and "market" not in pp["name"]
            ]
            lca = bw.LCA({pps[0]: 1})
            lca.lci()
            pp_idxs = [lca.activity_dict[pp.key] for pp in pps]
            for region in self.regions:
                # find activity
                act = [
                    a for a in db
                    if a["name"] == market and a["location"] == region
                ][0]
                # create first lca object
                lca = bw.LCA({act: 1}, method=self.methods[0])
                # build inventories
                lca.lci()

                for method in self.methods:
                    lca.switch_method(method)
                    lca.lcia()

                    df.at[(year, region, method), "score"] = lca.score
                    res_vec = np.squeeze(
                        np.asarray(lca.characterized_inventory.sum(axis=0)))
                    df.at[(year, region, method),
                          "score_direct"] = np.sum(res_vec[pp_idxs])

        df["total_score"] = df["score"] * df["value"] * 2.8e11  # EJ -> kWh
        df["total_score_direct"] = df["score_direct"] * df[
            "value"] * 2.8e11  # EJ -> kWh
        return df
示例#4
0
def test_electricity_tech_reporting():
    rep = ElectricityLCAReporting(scenario, years)
    yr = random.choice(years)
    region = random.choice(remind_regions)

    db = bw.Database(eidb_label(model, scenario, yr))
    fltrs = InventorySet(db).powerplant_filters
    tech = random.choice(list(fltrs.keys()))

    test = rep.report_tech_LCA(yr)

    assert len(test) > 0
    assert len(test.loc[(region, tech)]) > 0
示例#5
0
    def report_endpoint(self):
        """
        *DEPRECATED*
        Report the surplus extraction costs for the scenario.

        :return: A `pandas.Series` containing extraction costs
          with index `year` and `region`.
        """
        indicatorgroup = 'ReCiPe Endpoint (H,A) (obsolete)'
        endpoint_methods = [
            m for m in bw.methods if m[0] == indicatorgroup and m[2] == "total"
            and not m[1] == "total"
        ]

        df = self.data[self.data.Variable.isin(self.variables)]

        df.set_index(["Year", "Region", "Variable"], inplace=True)
        start = time.time()
        result = {}
        # calc score
        for year in self.years:
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            for region in self.regions:
                # create large lca demand object
                demand = [
                    self._act_from_variable(var,
                                            db,
                                            year,
                                            region,
                                            scale=df.loc[(year, region, var),
                                                         "value"])
                    for var in (df.loc[(
                        year, region)].index.get_level_values(0).unique())
                ]
                # flatten dictionaries
                demand = {k: v for item in demand for k, v in item.items()}
                lca = bw.LCA(demand, method=endpoint_methods[0])
                # build inventories
                lca.lci()
                for method in endpoint_methods:
                    lca.switch_method(method)
                    lca.lcia()
                    # 6% discount for monetary endpoint
                    factor = 1e9 * 1.06 ** (year - 2013) \
                             if "resources" == method[1] else 1e9
                    result[(year, region, method)] = lca.score * factor

        df_result = pd.Series(result)
        print("Calculation took {} seconds.".format(time.time() - start))
        return df_result  # billion pkm
示例#6
0
def test_electricity_supplier_shares_random():
    rep = ElectricityLCAReporting(scenario, years)
    yr = random.choice(years)
    region = random.choice(remind_regions)

    db = bw.Database(eidb_label(model, scenario, yr))

    shares = rep.supplier_shares(db, region)

    fltrs = InventorySet(db).powerplant_filters
    tech = random.choice(list(fltrs.keys()))

    assert len(shares[tech]) > 0
    assert math.isclose(sum(shares[tech].values()), 1)
示例#7
0
    def report_LDV_LCA(self):
        """
        Report per-drivetrain impacts along the given dimension.
        Both per-pkm as well as total numbers are given.

        :return: a dataframe with impacts for the REMIND EDGE-T
            transport sector model. Levelized impacts (per pkm) are
            found in the column `score_pkm`, total impacts in `total_score`.
        :rtype: pandas.DataFrame

        """

        df = self.data[self.data.Variable.isin(self.variables)]

        df.loc[:, "score_pkm"] = 0.
        # add methods dimension & score column
        methods_df = pd.DataFrame({"Method": self.methods, "score_pkm": 0.})
        df = df.merge(methods_df, "outer")  # on "score_pkm"

        df.set_index(["Year", "Region", "Variable", "Method"], inplace=True)
        start = time.time()

        # calc score
        for year in self.years:
            # find activities which at the moment do not depend
            # on regions
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            for region in self.regions:
                for var in (df.loc[(year, region)]
                            .index.get_level_values(0)
                            .unique()):
                    demand = self._act_from_variable(var, db, year, region)
                    lca = bw.LCA(demand,
                                 method=self.methods[0])
                    # build inventories
                    lca.lci()

                    if "_LowD" in self.scenario:
                        fct = max(1 - (year - 2020)/15 * 0.15, 0.85)
                    else:
                        fct = 1.
                    for method in self.methods:
                        lca.switch_method(method)
                        lca.lcia()
                        df.loc[(year, region, var, method),
                               "score_pkm"] = lca.score * fct
        print("Calculation took {} seconds.".format(time.time() - start))
        df["total_score"] = df["value"] * df["score_pkm"] * 1e9
        return df[["total_score", "score_pkm"]]
示例#8
0
    def report_materials(self):
        """
        Report the material demand of the LDV fleet for all regions and years.

        :return: A `pandas.Series` with index `year`, `region` and `material`.
        """
        # materials
        bioflows = self._get_material_bioflows_for_bev()

        df = self.data[self.data.Variable.isin(self.variables)]

        df.set_index(["Year", "Region", "Variable"], inplace=True)

        start = time.time()
        result = {}
        # calc score
        for year in self.years:
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            for region in self.regions:
                # create large lca demand object
                demand = [
                    self._act_from_variable(
                        var, db, year, region,
                        scale=df.loc[(year, region, var), "value"])
                    for var in (df.loc[(year, region)]
                                .index.get_level_values(0)
                                .unique())]
                # flatten dictionaries
                demand_flat = {}
                for item in demand:
                    for act, val in item.items():
                        demand_flat[act] = val + demand_flat.get(act, 0)

                lca = bw.LCA(demand_flat)
                # build inventories
                lca.lci()
                for code in bioflows:
                    result[(
                        year, region,
                        bw.get_activity(code)["name"].split(",")[0]
                    )] = (
                        lca.inventory.sum(axis=1)[
                            lca.biosphere_dict[code], 0]
                    )
        df_result = pd.Series(result)
        print("Calculation took {} seconds.".format(time.time() - start))
        return df_result * 1e9  # kg
示例#9
0
    def report_midpoint_to_endpoint(self):
        """
        *DEPRECATED*
        Report midpoint impacts for the full fleet for each scenario.

        :return: A `pandas.Series` containing impacts
          with index `year`,`region` and `method`.
        """
        methods = [
            m for m in bw.methods
            if m[0] == "ReCiPe Endpoint (H,A) (obsolete)" and m[2] != "total"
        ]

        df = self.data[self.data.Variable.isin(self.variables)]

        df.set_index(["Year", "Region", "Variable"], inplace=True)
        start = time.time()
        result = {}
        # calc score
        for year in self.years:
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            for region in self.regions:
                # create large lca demand object
                demand = [
                    self._act_from_variable(var,
                                            db,
                                            year,
                                            region,
                                            scale=df.loc[(year, region, var),
                                                         "value"])
                    for var in (df.loc[(
                        year, region)].index.get_level_values(0).unique())
                ]
                # flatten dictionaries
                demand = {k: v for item in demand for k, v in item.items()}
                lca = bw.LCA(demand, method=self.methods[0])
                # build inventories
                lca.lci()
                for method in methods:
                    lca.switch_method(method)
                    lca.lcia()
                    factor = 1e9
                    result[(year, region, method)] = lca.score * factor

        df_result = pd.Series(result)
        print("Calculation took {} seconds.".format(time.time() - start))
        return df_result  # billion pkm
示例#10
0
    def _sum_variables_and_add_scores(self, market, variables):
        """
        Sum the variables that belong to the market
        and calculate the LCA scores for all years,
        regions and methods.
        """
        df = self.data[self.data.Variable.isin(variables)]\
                 .groupby(["Region", "Year"])\
                 .sum()
        df.reset_index(inplace=True)
        df["market"] = market

        # add methods dimension & score column
        methods_df = pd.DataFrame({"method": self.methods, "market": market})
        df = df.merge(methods_df)
        df.loc[:, "score"] = 0.

        # calc score
        for year in self.years:
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            for region in self.regions:
                # import ipdb;ipdb.set_trace()
                # find activity
                act = [a for a in db if a["name"] == market and
                       a["location"] == region][0]
                # create first lca object
                lca = bw.LCA({act: 1}, method=df.method[0])
                # build inventories
                lca.lci()

                df_slice = df[(df.Year == year) &
                              (df.Region == region)]

                def get_score(method):
                    lca.switch_method(method)
                    lca.lcia()
                    return lca.score

                df_slice.loc[:, "score"] = df_slice.apply(
                    lambda row: get_score(row["method"]), axis=1)
                df.update(df_slice)

        df["total_score"] = df["score"] * df["value"] * 2.8e11  # EJ -> kWh
        return df
示例#11
0
    def report_tech_LCA(self, year):
        """
        For each REMIND technology, find a set of activities in the region.
        Use ecoinvent tech share file to determine the shares of technologies
        within the REMIND proxies.
        """

        tecf = pd.read_csv(DATA_DIR / "powertechs.csv", index_col="tech")
        tecdict = tecf.to_dict()["mif_entry"]

        db = bw.Database(eidb_label(self.model, self.scenario, year))

        result = self._cartesian_product({
            "region": self.regions,
            "tech": list(tecdict.keys()),
            "method": self.methods
        }).sort_index()

        for region in self.regions:
            # read the ecoinvent techs for the entries
            shares = self.supplier_shares(db, region)

            for tech, acts in shares.items():
                # calc LCA
                lca = bw.LCA(acts, self.methods[0])
                lca.lci()

                for method in self.methods:
                    lca.switch_method(method)
                    lca.lcia()
                    result.at[(region, tech, method), "score"] = lca.score
                    res_vec = np.squeeze(
                        np.asarray(lca.characterized_inventory.sum(axis=0)))
                    result.at[(region, tech, method),
                              "score_direct"] = np.sum(res_vec[pp_idxs])

        return result
示例#12
0
    def report_LDV_LCA(self):
        """
        Report per-drivetrain impacts along the given dimension.
        Both per-pkm as well as total numbers are given.

        :return: a dataframe with impacts for the REMIND EDGE-T
            transport sector model. Levelized impacts (per pkm) are
            found in the column `score_pkm`, total impacts in `total_score`.
        :rtype: pandas.DataFrame

        """

        df = self.data[self.data.Variable.isin(self.variables)]

        df.loc[:, "score_pkm"] = 0.
        df.loc[:, "score_pkm_direct"] = 0.
        # add methods dimension & score column
        methods_df = pd.DataFrame({"Method": self.methods, "score_pkm": 0.})
        df = df.merge(methods_df, "outer")  # on "score_pkm"

        df.set_index(["Year", "Region", "Variable", "Method"], inplace=True)
        start = time.time()

        # calc score
        for year in self.years:
            # find activities which at the moment do not depend
            # on regions
            db = bw.Database(eidb_label(self.model, self.scenario, year))
            fleet_acts = [
                a for a in db if a["name"].startswith(
                    "transport, passenger car, fleet average")
            ]
            lca = bw.LCA({fleet_acts[0]: 1})
            lca.lci()
            fleet_idxs = [lca.activity_dict[a.key] for a in fleet_acts]

            for region in self.regions:
                for var in (df.loc[(
                        year, region)].index.get_level_values(0).unique()):
                    demand = self._act_from_variable(var, db, year, region)

                    if not demand:
                        continue

                    lca = bw.LCA(demand, method=self.methods[0])
                    # build inventories
                    lca.lci()

                    ## this is a workaround to correct for higher loadfactors in the LowD scenarios
                    if "_LowD" in self.scenario:
                        fct = max(1 - (year - 2020) / 15 * 0.15, 0.85)
                    else:
                        fct = 1.
                    for method in self.methods:
                        lca.switch_method(method)
                        lca.lcia()

                        df.at[(year, region, var, method),
                              "score_pkm"] = lca.score * fct
                        res_vec = np.squeeze(
                            np.asarray(
                                lca.characterized_inventory.sum(axis=0)))
                        df.at[(year, region, var, method), "score_pkm_direct"] = \
                            np.sum(res_vec[fleet_idxs]) * fct
        print("Calculation took {} seconds.".format(time.time() - start))
        df["total_score"] = df["value"] * df["score_pkm"] * 1e9
        df["total_score_direct"] = df["value"] * df["score_pkm_direct"] * 1e9
        return df[[
            "total_score", "total_score_direct", "score_pkm",
            "score_pkm_direct"
        ]]