def naiv_pred(): flag=int(request.args.get('flag')) li=[] te=pd.read_csv("test.csv") if(flag): li.append(request.args.get('customerID')) li.append(request.args.get('Gender')) li.append(request.args.get('SeniorCitizen')) li.append(request.args.get('Partner')) li.append(request.args.get('Dependents')) li.append(request.args.get('tenure')) li.append(request.args.get('PhoneService')) li.append(request.args.get('MultipleLines')) li.append(request.args.get('InternetService')) li.append(request.args.get('OnlineSecurity')) li.append(request.args.get('OnlineBackup')) li.append(request.args.get('DeviceProtection')) li.append(request.args.get('TechSupport')) li.append(request.args.get('StreamingTV')) li.append(request.args.get('StreamingMovies')) li.append(request.args.get('Contract')) li.append(request.args.get('PaperlessBilling')) li.append(request.args.get('BaymentMrthod')) li.append(request.args.get('MonthlyCharges')) li.append(request.args.get('TotalCharges')) dic={} c=0 for i in X.columns: dic[i]=[li[c]] c+=1 te=pd.DataFrame(data=dic) te_c=prep.cleaning(te.copy())["data"] te["Churn"]=df["d"]["Churn"].inverse_transform(clf_naiv.get_pred(te_c)) data={"pred":te.head(500).to_json()} return jsonify(data)
def prp(): df=prep.cleaning(pd.read_csv("dataset.csv"))["data"] data={"data":df.head(500).to_json()} return jsonify(data)
import prep import LR import LOGR import RF import KNN import SVM import Dtree import naiv import pandas as pd import json from flask import Flask,jsonify,request,render_template from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA df=prep.cleaning(pd.read_csv("dataset.csv")) #load the dataset lda = LDA(n_components = 8) #select 8 feature X=df["data"].drop("Churn",axis=1) Y=df["data"]["Churn"] lda.fit(X,Y) #fit the data to select the best feature clf_log=LOGR.LR(df["data"].copy(),"Churn",lda) #intiate object from logisticRegression Class clf_KNN=KNN.KNN(df["data"].copy(),"Churn",lda) #intiate object from K-NN Class clf_RF=RF.RF(df["data"].copy(),"Churn",lda) #intiate object from RandomForest Class clf_SVM=SVM.SV(df["data"].copy(),"Churn",lda) #intiate object from RandomForest Class clf_Dt=Dtree.DT(df["data"].copy(),"Churn",lda) #intiate object from RandomForest Class clf_naiv=naiv.RF(df["data"].copy(),"Churn",lda) #intiate object from RandomForest Class app = Flask(__name__) @app.route("/",methods=["GET","POST"]) def hello():