target_net.eval() if torch.cuda.is_available(): policy_net = policy_net.cuda() target_net = target_net.cuda() torch.backends.cudnn.enabled = True optimizer = optim.RMSprop(policy_net.parameters(), lr=1e-7) memory = utilsRL.ReplayMemory(10000) episodeDurations = [] steps_done = 0 seqRootRGB = dirPath + 'dataset/iLIDS-VID/i-LIDS-VID/sequences/' personIdxDict, personFramesDict = prepareDataset.prepareDS(seqRootRGB) trainTriplets, testTriplets = prepareDataset.generateTriplets( len(personFramesDict), testTrainSplit) personNoDict = dict([v, k] for k, v in personIdxDict.items()) utilsRL.saveTestTriplet(testTriplets) #os.remove("loss20pdata20epochs.txt") def optimizeModel(): # print("Optimizing Model Begin") if len(memory) < BATCH_SIZE: # print("Optimizing Model End because of not sufficient training examples in replay memory") return transitions = memory.sample(BATCH_SIZE) batch = Transition(*zip(*transitions)) # print batch
input_size = 128 hidden_size = 32 num_layers = 2 learning_rate = 0.001 momentum = 0.9 alpha = torch.FloatTensor([0.3]) if torch.cuda.is_available(): alpha = alpha.cuda() alpha = Variable(alpha) num_epochs = 200 testTrainSplit = 1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print device trainTriplets, testTriplets = prepareDataset.generateTriplets( 300, testTrainSplit) features_dir = '/data/home/prateeka/ilids_features/' if os.path.isfile("lossRGB.txt"): os.remove("lossRGB.txt") if os.path.isfile("lossRGBv.txt"): os.remove("lossRGBv.txt") class RNN(nn.Module): def __init__(self, input_size, hidden_size, num_layers): super(RNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size,
hidden_size = 128 num_layers = 2 learning_rate = 0.001 momentum = 0 alpha = torch.FloatTensor([0.4]) if torch.cuda.is_available(): alpha = alpha.cuda() alpha = Variable(alpha) num_epochs = 2 batch_size = 1 testTrainSplit = 0.8 seqRootRGB = '/Users/prateek/8thSem/dataset/iLIDS-VID/i-LIDS-VID/sequences/' personIdxDict, personFramesDict = prepareDataset.prepareDS(seqRootRGB) nTotalPersons = len(personFramesDict) trainTriplets, testTriplets = prepareDataset.generateTriplets( nTotalPersons, testTrainSplit) class RNN(nn.Module): def __init__(self, input_size, hidden_size, num_layers): super(RNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)