"_ngf"+str(ngf)+"_N"+str(N)+"_dep"+str(nDep) if opt.WGAN: desc +='_WGAN' if opt.LS: desc += '_LS' if bMirror: desc += '_mirror' if opt.contentScale !=1 or opt.textureScale !=1: desc +="_scale"+str(opt.contentScale)+";"+str(opt.textureScale) desc += '_cLoss'+str(opt.cLoss) if not opt.coordCopy: desc += "no coord copy" targetMosaic,templates=getTemplates(opt,N,vis=True,path=opt.outputFolder+desc) fixnoise = torch.FloatTensor(1, nz, targetMosaic.shape[2]//2**nDep,targetMosaic.shape[3]//2**nDep) print("fixed variables",fixnoise.data.shape,targetMosaic.data.shape) netD = Discriminator(ndf, opt.nDepD, bSigm=not opt.LS and not opt.WGAN) ################################## if opt.multiScale: netMix = NetU_MultiScale(ngf, nDep, nz, bSkip=opt.skipConnections, nc=N + 5, ncIn=5, bTanh=False, bCopyIn=opt.coordCopy, Ubottleneck=opt.Ubottleneck) else: netMix =NetUskip(ngf, nDep, nz, bSkip=opt.skipConnections, nc=N + 5, ncIn=5, bTanh=False, bCopyIn=opt.coordCopy, Ubottleneck=opt.Ubottleneck)##copy coords more often device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print ("device",device) Gnets=[netMix] if opt.refine:
ndf = int(opt.ndf) desc = "fc" + str(opt.fContent) + "_ngf" + str(ngf) + "_ndf" + str( ndf) + "_dep" + str(nDep) + "-" + str(opt.nDepD) if opt.WGAN: desc += '_WGAN' if opt.LS: desc += '_LS' if bMirror: desc += '_mirror' if opt.contentScale != 1 or opt.textureScale != 1: desc += "_scale" + str(opt.contentScale) + ";" + str(opt.textureScale) desc += '_cLoss' + str(opt.cLoss) targetMosaic = getTemplates(opt, N) fixnoise = torch.FloatTensor(1, nz, targetMosaic.shape[2] // 2**nDep, targetMosaic.shape[3] // 2**nDep) print("fixed variables", fixnoise.data.shape, targetMosaic.data.shape) netD = Discriminator(ndf, opt.nDepD, bSigm=not opt.LS and not opt.WGAN) ################################## netMix = NetUskip(ngf, nDep, nz, bSkip=opt.skipConnections, nc=3, ncIn=3, bTanh=True, Ubottleneck=opt.Ubottleneck) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")