def run_whole_image(self, img, minu_thr=0.2): # feed_dict = {self.images_placeholder: img} # minutiae_cylinder = self.sess.run(self.minutiae_cylinder_placeholder, feed_dict=feed_dict) img = img / 128.0 - 1 img = np.expand_dims(img, axis=2) img = np.expand_dims(img, axis=0) feed_dict = {self.images_placeholder: img} minutiae_cylinder = self.sess.run(self.minutiae_cylinder_placeholder, feed_dict=feed_dict) minutiae_cylinder = np.squeeze(minutiae_cylinder, axis=0) #start = timeit.default_timer() minutiae = prepare_data.get_minutiae_from_cylinder2(minutiae_cylinder, thr=0.25) # stop = timeit.default_timer() # minu_time = stop - start # print minu_time # cv2.imwrite('test_0.jpeg', (minutiae_cylinder[:, :, 0:3]) * 255) # cv2.imwrite('test_1.jpeg', (minutiae_cylinder[:, :, 3:6]) * 255) # cv2.imwrite('test_2.jpeg', (minutiae_cylinder[:, :, 6:9]) * 255) # cv2.imwrite('test_3.jpeg', (minutiae_cylinder[:, :, 9:12]) * 255) # prepare_data.show_features(img, minutiae, fname=os.path.basename(file)[:-4] +'.jpeg') minutiae = prepare_data.refine_minutiae(minutiae, dist_thr=10, ori_dist=np.pi / 4) minutiae = self.remove_crowded_minutiae(minutiae) return minutiae
def run_whole_image(self, img, minu_thr=0.2): img = img / 128.0 - 1 img = np.expand_dims(img, axis=2) img = np.expand_dims(img, axis=0) feed_dict = {self.images_placeholder: img} minutiae_cylinder = self.sess.run(self.minutiae_cylinder_placeholder, feed_dict=feed_dict) minutiae_cylinder = np.squeeze(minutiae_cylinder, axis=0) minutiae = prepare_data.get_minutiae_from_cylinder2(minutiae_cylinder, thr=minu_thr) minutiae = prepare_data.refine_minutiae(minutiae, dist_thr=20, ori_dist=np.pi / 4) minutiae = self.remove_crowded_minutiae(minutiae) return minutiae