class_filename = filename_root + "_class.txt" with open(os.path.join(class_path, class_filename), 'w') as f: f.write(result_class_name) # Load model model = tf.keras.models.load_model('bacteria_model.h5', compile=False) losses = {"class_output": "categorical_crossentropy", "segm_output": wbce} lossWeights = {"class_output": 1.0, "segm_output": 1.0} model.compile(optimizer='adam', loss=losses, loss_weights=lossWeights, metrics=['accuracy']) # Get training data train_data = prepare_train_data(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS, False) X_train = train_data['X_train'] # Get testing data test_data = prepare_test_data(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS) X_test = test_data['X_test'] # Get results [class_predictions_train, segm_predictions_train] = model.predict(X_train, verbose=1) [class_predictions_test, segm_predictions_test] = model.predict(X_test, verbose=1) save_results_to_files(class_predictions_train, segm_predictions_train, 'train') save_results_to_files(class_predictions_test, segm_predictions_test, 'test')
sys.exit(1) except IndexError: sys.stderr.write("read_tweets.py <tsvfile> <task> <training>") sys.exit(1) #if dataset == "emot": # emoticon datset ## instances = emot_instances # normal dataset #tweets,instances,tag_map = prepare_tweet_data(tsvfile,task) emot_tweets= cPickle.load(open("tweet_emoticondata.pkl","rb")) emot_instances= cPickle.load(open("instance_emoticondata.pkl","rb")) tweets =emot_tweets instances = emot_instances testset_tweets,testset_instances,tag_map = prepare_test_data(testfile,task) # lazy cleaning of objective and neutral objectives = [key for key in tweets if instances[key].label == "objective" or instances[key].label == "neutral"] popped = 0 tpopped=0 tneu = 0 neu_count=0 pred_file = open("task2-swatcs-A-twitter-constrained.output","wb") for key in objectives: if instances[key].label == "neutral": neu_count+=1 if task == "A": instances.pop(key) tweets.pop(key) popped+=1 elif task == "B":
import numpy as np import scipy.io as sio import gradient as gr import prepare_data as pre import sigmoid import random import math import time import csv import datetime import multilayer train_small = sio.loadmat('train_small.mat') train = sio.loadmat('train.mat') test = sio.loadmat('test.mat') train_small_data = train_small['train'] train_data = train['train'] test_data = test['test'] (features, labels) = pre.prepare_train_data(train_small_data) (x_test, y_test) = pre.prepare_test_data(test_data) if __name__ == '__main__': ann = multilayer.NeuralNet() (weights_ret, bias_ret) = ann.train_multilayer_SGD(labels[6], features[6], .01, 500, y_test, x_test)
parser.add_argument('--model_name_predict', type=str, default="guo.h5", help='model used to predict') parser.add_argument('--result_path', type=str, default="./result", help='model path') parser.add_argument('--result_stats_path', type=str, default="./logs/statistic/", help='trained model name') parser.add_argument('-t','--train_mode', type=lambda x: (str(x).lower() == 'true'), default=True, help='train the model or not') parser.add_argument('-i','--nEpochs', type=int, default=2, help='number of epochs to train for') parser.add_argument('-u','--upscale_factor', type=int, default=2, help="super resolution upscale factor") opt = parser.parse_args() if opt.train_mode: print('===> Loading datasets') train_data, train_label = prepare_train_data(opt.train_data_path, opt.upscale_factor) print(train_data.shape) print(train_label.shape) test_data, test_label = prepare_test_data(opt.test_data_path, opt.upscale_factor) print(test_data.shape) print(test_label.shape) data_all = [train_data, train_label, test_data, test_label] print('===> Building model') train(data_all, os.path.join(opt.model_path, opt.model_name_train), opt.nEpochs) model_name_predict = opt.model_name_train print('===> Testing') stats = predict(os.path.join(opt.model_path, model_name_predict), opt.test_data_path, opt.result_path) else: print('===> Testing') stats = predict(os.path.join(opt.model_path, opt.model_name_predict), opt.test_data_path, opt.result_path) result_stats_save(stats, opt.result_stats_path) print('===> Complete')
# print "-----------------------------ERROR----------------------------" # print J_ret # print "-----------------------------ACCURACY----------------------------" # print acc_ret if __name__ == '__main__': train_small = sio.loadmat('train_small.mat') train = sio.loadmat('train.mat') test = sio.loadmat('test.mat') train_small_data = train_small['train'] train_data = train['train'] test_data = test['test'] (features, labels) = pre.prepare_train_data(train_small_data) (x_train, y_train) = pre.prepare_test_data(train_data) (x_test, y_test) = pre.prepare_test_data(test_data) xTrain = eval(sys.argv[1]) yTrain = eval(sys.argv[2]) num_epochs = int(eval(sys.argv[4])) learning_rate = eval(sys.argv[3]) error_type = sys.argv[5] (weights_ret, bias_ret) = SGD(yTrain, xTrain, learning_rate, num_epochs, error_type) np.savetxt('weights.txt', weights_ret) np.savetxt('bias.txt', bias_ret)