def minutiae_whole_image(model_path, sample_path, imgs, output_name='reconstruction/gen:0'): imgs = glob.glob('/Data/Rolled/NISTSD14/Image2/*.bmp') imgs.sort() with tf.Graph().as_default(): with TowerContext('', is_training=False): with tf.Session() as sess: is_training = get_current_tower_context().is_training load_model(model_path) images_placeholder = tf.get_default_graph().get_tensor_by_name( 'QueueInput/input_deque:0') # is_training minutiae_cylinder_placeholder = tf.get_default_graph( ).get_tensor_by_name(output_name) for n, file in enumerate(imgs): img0 = cv2.imread(file, cv2.IMREAD_GRAYSCALE) img = img0 / 128.0 - 1 img = np.expand_dims(img, axis=2) img = np.expand_dims(img, axis=0) feed_dict = {images_placeholder: img} minutiae_cylinder = sess.run(minutiae_cylinder_placeholder, feed_dict=feed_dict) minutiae_cylinder = np.squeeze(minutiae_cylinder, axis=0) minutiae = prepare_data.get_minutiae_from_cylinder( minutiae_cylinder, thr=0.25) minutiae = prepare_data.refine_minutiae(minutiae, dist_thr=10, ori_dist=np.pi / 4) prepare_data.show_minutiae(img0, minutiae) print n
def minutiae_whole_image(model_path,sample_path, imgs, output_name='reconstruction/gen:0'): #imgs = glob.glob('/media/kaicao/Data/Data/Rolled/NISTSD4/Image_Aligned'+'/*.jpeg') #imgs = glob.glob('/home/kaicao/Dropbox/Research/Data/Latent/NISTSD27/image/'+'*.bmp') imgs = glob.glob('/future/Data/Rolled/NISTSD14/Image2/*.bmp') #imgs = glob.glob('/research/prip-kaicao/Data/Latent/DB/NIST27/image/' + '*.bmp') #imgs = glob.glob('/research/prip-kaicao/Data/Rolled/NIST4/Image/'+'*.bmp') imgs.sort() weight = get_weights(opt.SHAPE, opt.SHAPE, 12) import os #if not os.path.isdir(sample_path): # os.makedirs(sample_path) with tf.Graph().as_default(): with TowerContext('', is_training=False): with tf.Session() as sess: is_training= get_current_tower_context().is_training load_model(model_path) images_placeholder = tf.get_default_graph().get_tensor_by_name('QueueInput/input_deque:0') #is_training minutiae_cylinder_placeholder = tf.get_default_graph().get_tensor_by_name(output_name) for n, file in enumerate(imgs): img0 = cv2.imread(file,cv2.IMREAD_GRAYSCALE) img = img0/128.0-1 img = np.expand_dims(img,axis=2) img = np.expand_dims(img,axis=0) feed_dict = {images_placeholder: img} minutiae_cylinder= sess.run(minutiae_cylinder_placeholder, feed_dict=feed_dict) minutiae_cylinder = np.squeeze(minutiae_cylinder,axis=0) minutiae = prepare_data.get_minutiae_from_cylinder(minutiae_cylinder,thr=0.25) #cv2.imwrite('test_0.jpeg', (minutiae_cylinder[:, :, 0:3]) * 255) #cv2.imwrite('test_1.jpeg', (minutiae_cylinder[:, :, 3:6]) * 255) #cv2.imwrite('test_2.jpeg', (minutiae_cylinder[:, :, 6:9]) * 255) #cv2.imwrite('test_3.jpeg', (minutiae_cylinder[:, :, 9:12]) * 255) #prepare_data.show_features(img, minutiae, fname=os.path.basename(file)[:-4] +'.jpeg') minutiae = prepare_data.refine_minutiae(minutiae, dist_thr=10, ori_dist=np.pi / 4) prepare_data.show_minutiae(img0, minutiae) print n