def __init__(self): ''' This constructor is supposed to initialize data members. Use triple quotes for function documentation. ''' self.debug = 0 self.num_train_samples=0 self.num_feat=1 self.num_labels=1 self.is_trained=False self.preproc = Preprocessor()
def __init__(self): '''You may here define the structure of your model. You can create your own type of ensemble. You can make ensembles of pipelines or pipelines of ensembles. This example votes among two classifiers: BasicClassifier and a pipeline whose classifier is itself an ensemble of GaussianNB classifiers.''' fancy_classifier = Pipeline([ ('preprocessing', Preprocessor()), ('classification', BaggingClassifier(base_estimator=GaussianNB())) ]) self.clf = VotingClassifier(estimators=[('basic', BasicPredictor()), ('fancy', fancy_classifier)], voting='soft')
def predict(self, X): ''' This function should provide predictions of labels on (test) data. Here we just return zeros... Make sure that the predicted values are in the correct format for the scoring metric. For example, binary classification problems often expect predictions in the form of a discriminant value (if the area under the ROC curve it the metric) rather that predictions of the class labels themselves. For multi-class or multi-labels problems, class probabilities are often expected if the metric is cross-entropy. Scikit-learn also has a function predict-proba, we do not require it. The function predict eventually can return probabilities. ''' Prepro = Preprocessor() Prepro.pip0(10) Prepro.fit_transform(X,y=None) num_test_samples = len(X) if X.ndim>1: num_feat = len(X[0]) print("PREDICT: dim(X)= [{:d}, {:d}]".format(num_test_samples, num_feat)) if (self.num_feat != num_feat): print("ARRGH: number of features in X does not match training data!") print("PREDICT: dim(y)= [{:d}, {:d}]".format(num_test_samples, self.num_labels)) output= self.clf.predict(X) return output
def __init__(self): ''' This constructor is supposed to initialize data members. Use triple quotes for function documentation. Model is the class called by Codalab. This class must have at least a method "fit" and a method "predict". ''' self.num_train_samples = 0 self.num_feat = 1 self.num_labels = 1 self.is_trained = False # The model should be defined in the constructor self.mod = Pipeline([('preprocessing', Preprocessor()), ('predictor', Predictor())]) print("MODEL=" + self.mod.__str__())
def fit(self, X, y): ''' This function should train the model parameters. Here we do nothing in this example... Args: X: Training data matrix of dim num_train_samples * num_feat. y: Training label matrix of dim num_train_samples * num_labels. Both inputs are numpy arrays. For classification, labels could be either numbers 0, 1, ... c-1 for c classe or one-hot encoded vector of zeros, with a 1 at the kth position for class k. The AutoML format support on-hot encoding, which also works for multi-labels problems. Use data_converter.convert_to_num() to convert to the category number format. For regression, labels are continuous values. ''' Prepro = Preprocessor() Prepro.pip0(10) Prepro.fit_transform(X, y) self.num_train_samples = len(X) if X.ndim>1: self.num_feat = len(X[0]) print("FIT: dim(X)= [{:d}, {:d}]".format(self.num_train_samples, self.num_feat)) num_train_samples = len(y) if y.ndim>1: self.num_labels = len(y[0]) print("FIT: dim(y)= [{:d}, {:d}]".format(num_train_samples, self.num_labels)) if (self.num_train_samples != num_train_samples): print("ARRGH: number of samples in X and y do not match!") ###### Baseline models ###### from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR # Comment and uncomment right lines in the following to choose the model #self.clf = GaussianNB() #self.clf = LinearRegression() #self.clf = DecisionTreeRegressor() #self.clf = RandomForestRegressor() #self.clf = KNeighborsRegressor() #self.clf = SVR(C=1.0, epsilon=0.2) if self.is_trained==False: self.clf=self.selection_hyperparam(X, y) # self.clf=self.selection_hyperparam__(X, y) self.is_trained=True
Another style is to incorporate the test as a main function in the Data manager class itself. """ from sys import path path.append("../ingestion_program") # Contains libraries you will need from data_manager import DataManager # such as DataManager from prepro import Preprocessor input_dir = "../sample_data" output_dir = "../resuts" basename = 'credit' D = DataManager(basename, input_dir) # Load data print("*** Original data ***") print D Prepro = Preprocessor() # Preprocess on the data and load it back into D D.data['X_train'] = Prepro.fit_transform(D.data['X_train'], D.data['Y_train']) D.data['X_valid'] = Prepro.transform(D.data['X_valid']) D.data['X_test'] = Prepro.transform(D.data['X_test']) # Here show something that proves that the preprocessing worked fine print("*** Transformed data ***") print D # Preprocessing gives you opportunities of visualization: # Scatter-plots of the 2 first principal components # Scatter plots of pairs of features that are most relevant import matplotlib.pyplot as plt X = D.data['X_train']
class model: def __init__(self): ''' This constructor is supposed to initialize data members. Use triple quotes for function documentation. ''' self.debug = 0 self.num_train_samples=0 self.num_feat=1 self.num_labels=1 self.is_trained=False self.preproc = Preprocessor() def cross_validation_simple(self, j, k, X, Y): return cross_val_score(RandomForestRegressor(100, "mse", None, 2, j, 0.0, k), X, Y, cv=3) # Recherche des meilleurs paramètres à donner à RandomForestRegressor. # A cause de la lenteur de cette méthode, nous l'avons utilisée dans model_param.py, et nous # avons directement donné les paramètres optimaux à Random Forest, qui s'avèrent être les paramètres de base. def selection_hyperparam(self, X, Y): SMax=0 param=dict() tab=[0.3, 0.6, 0.9, 'auto'] for j in range(1, 11, 1): for k in range(0, 4, 1): a=RandomForestRegressor(100, "mse", None, 2, j, 0.0, tab[k]) a.fit(X, Y) error=self.cross_validation_simple(j, tab[k], X, Y) score=mean(error) print(" j: "+str(j)+" k :"+str(k)) if(score>SMax): SMax=score param={'param2':j, 'param3':tab[k]} print('first param '+str(param['param2'])+' second param '+str(param['param3'])) print('first param final '+str(param['param2'])+' second param final '+str(param['param3'])) return param def fit(self, X, y): ''' This function should train the model parameters. Here we do nothing in this example... Args: X: Training data matrix of dim num_train_samples * num_feat. y: Training label matrix of dim num_train_samples * num_labels. Both inputs are numpy arrays. For classification, labels could be either numbers 0, 1, ... c-1 for c classe or one-hot encoded vector of zeros, with a 1 at the kth position for class k. The AutoML format support on-hot encoding, which also works for multi-labels problems. Use data_converter.convert_to_num() to convert to the category number format. For regression, labels are continuous values. ''' if self.debug: self.num_train_samples = self.preproc.fit_transform(X).shape[0] if self.preproc.fit_transform(X).ndim>1: self.num_feat = self.preproc.fit_transform(X).shape[1] print("FIT: dim(X)= [{:d}, {:d}]").format(self.num_train_samples, self.num_feat) num_train_samples = y.shape[0] if y.ndim>1: self.num_labels = y.shape[1] print("FIT: dim(y)= [{:d}, {:d}]").format(num_train_samples, self.num_labels) if (self.num_train_samples != num_train_samples): print("ARRGH: number of samples in X and y do not match!") ###### Baseline models ###### from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.neighbors import KNeighborsRegressor # Comment and uncomment right lines in the following to choose the model #self.model = GaussianNB() #self.model = LinearRegression() #self.model = DecisionTreeRegressor() self.model = RandomForestRegressor() #self.model = KNeighborsRegressor() self.model.fit(self.preproc.fit_transform(X), y) self.is_trained=True def predict(self, X): ''' This function should provide predictions of labels on (test) data. Make sure that the predicted values are in the correct format for the scoring metric. For example, binary classification problems often expect predictions in the form of a discriminant value (if the area under the ROC curve it the metric) rather that predictions of the class labels themselves. For multi-class or multi-labels problems, class probabilities are often expected if the metric is cross-entropy. Scikit-learn also has a function predict-proba, we do not require it. The function predict eventually can return probabilities. ''' if self.debug: num_test_samples = self.preproc.fit_transform(X).shape[0] if self.preproc.fit_transform(X).ndim>1: num_feat = self.preproc.fit_transform(X).shape[1] print("PREDICT: dim(X)= [{:d}, {:d}]").format(num_test_samples, num_feat) if (self.num_feat != num_feat): print("ARRGH: number of features in X does not match training data!") print("PREDICT: dim(y)= [{:d}, {:d}]").format(num_test_samples, self.num_labels) y = self.model.predict(self.preproc.fit_transform(X)) return y def save(self, path="./"): pickle.dump(self, open(path + '_model.pickle', "wb")) def load(self, path="./"): modelfile = path + '_model.pickle' if isfile(modelfile): with open(modelfile, "rb") as f: self = pickle.load(f) print("Model reloaded from: " + modelfile) return self
default='./prepro_vocab.json', help='file path for saved preprocessor') return parser.parse_args() if __name__ == '__main__': # Get arguments print('Getting arguments...') args = get_args() # make a dataset print('Importing dataset...') data = SentimentDataset(data=args.train_path) # preprocess and save word encodings preprocessor = Preprocessor(max_vocab=args.max_vocab) data = preprocessor.fit_transform(dataset=data) preprocessor.save(args.prepro_save_path) # validation split data.split_data(validation_count=args.validation_count) train_ds, val_ds = data.to_dataset() # to dataLoaders train_set = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True) val_set = DataLoader(val_ds, batch_size=args.batch_size, shuffle=False) print('Initializing model...') mod = SentimentModel( len(preprocessor.vocab2enc) + 3, args.embedding_dim, args.hidden_dim) opt = Adam(mod.parameters(), lr=args.lr)
parser.add_argument('--prepro_path', type=str, default='./prepro_vocab.json', help='path to fit preprocessor') return parser.parse_args() if __name__ == '__main__': # Get arguments print('Getting arguments...') args = get_args() # make a dataset print('Importing dataset...') data = SentimentDataset(data=args.test_path) # preprocess and save word encodings preprocessor = Preprocessor(max_vocab=args.max_vocab) preprocessor.load() data = preprocessor.transform(dataset=data) # validation split test_ds, _ = data.to_dataset() # to dataLoaders test_set = DataLoader(test_ds, batch_size=16, shuffle=False) # load saved model print('Loading trained model...') model = torch.load(args.model_path) model.eval() test(test_set, model, val=False)
# Interesting point: the M2 prepared challenges using sometimes AutoML challenge metrics # not scikit-learn metrics. For example: from libscores import bac_metric from libscores import auc_metric from data_manager import DataManager from data_converter import convert_to_num basename = 'credit' D = DataManager(basename, input_dir) # Load data print D # Here we define 3 classifiers and compare them classifier_dict = { 'Pipeline': Pipeline([('prepro', Preprocessor()), ('classif', BasicPredictor())]), 'RandomPred': RandomPredictor(), 'BasicPred': BasicPredictor(), 'FancyPred': FancyPredictor() } print "Classifier\tAUC\tBAC\tACC\tError bar" for key in classifier_dict: myclassifier = classifier_dict[key] # Train Yonehot_tr = D.data['Y_train'] # Attention pour les utilisateurs de problemes multiclasse,
from sklearn.preprocessing import Imputer from sklearn.cluster import FeatureAgglomeration from sys import path path.append("../ingestion_program") # Contains libraries you will need from data_manager import DataManager # such as DataManager from prepro import Preprocessor input_dir = "../sample_data" output_dir = "../resuts" basename = 'Housing' D = DataManager(basename, input_dir) # Load data print("*** Original data ***") print D Prepro = Preprocessor() X = np.copy(D.data['X_train']) y = np.copy(D.data['Y_train']) x_valid = np.copy(D.data['X_valid']) x_test = np.copy(D.data['X_valid']) model_selection = Prepro.selectFeatures(X, y) D.data['X_train'] = model_selection.transform(X) D.data['X_valid'] = model_selection.transform(x_valid) D.data['X_test'] = model_selection.transform(x_test) estimators = [('imputer', Imputer()), ('scaler', MinMaxScaler()), ('clustring', FeatureAgglomeration())] pipe = Pipeline(estimators) D.data['X_train'] = pipe.fit_transform(D.data['X_train'], D.data['Y_train']) D.data['X_valid'] = pipe.transform(D.data['X_valid'])
from sklearn.metrics import accuracy_score # Interesting point: the M2 prepared challenges using sometimes AutoML challenge metrics # not scikit-learn metrics. For example: from libscores import bac_metric from libscores import auc_metric from data_manager import DataManager from data_converter import convert_to_num basename = 'credit' D = DataManager(basename, input_dir) # Load data print D # Here we define 3 classifiers and compare them classifier_dict = { 'Pipeline': Pipeline([('prepro', Preprocessor()), ('classif', FancyPredictor())]), 'RandomPred': RandomPredictor(), 'BasicPred': BasicPredictor(), 'FancyPred': FancyPredictor()} print "Classifier\tAUC\tBAC\tACC\tError bar" for key in classifier_dict: myclassifier = classifier_dict[key] # Train Yonehot_tr = D.data['Y_train'] # Attention pour les utilisateurs de problemes multiclasse, # mettre convert_to_num DANS la methode fit car l'ingestion program # fournit Yonehot_tr a la methode "fit" # Ceux qui resolvent des problemes a 2 classes ou des problemes de