def get_unsw_data(): dataset_names = [ 'UNSW/UNSW_NB15_%s-set.csv' % x for x in ['training', 'testing'] ] feature_file = 'UNSW/feature_names_train_test.csv' headers, _, _, _ = unsw.get_feature_names(feature_file) symbolic_features = unsw.discovery_feature_volcabulary(dataset_names) integer_features = unsw.discovery_integer_map(feature_file, dataset_names) continuous_features = unsw.discovery_continuous_map( feature_file, dataset_names) X, y = get_dataset(dataset_names[0], headers, 'unsw') test_X, test_y = get_dataset(dataset_names[1], headers, 'unsw') train_dict = dict() test_dict = dict() merged_inputs = [] embeddings = [] large_discrete = [] merged_dim = 0 merged_dim += build_embeddings(symbolic_features, integer_features, embeddings, large_discrete, merged_inputs, X, test_X, train_dict, test_dict, 'unsw') merged_dim += len(continuous_features) cont_component = build_continuous(continuous_features, merged_inputs, X, test_X, train_dict, test_dict, 'unsw') return train_dict, y, test_dict, test_y
def modality_net_unsw(hidden): dataset_names = [ 'UNSW/UNSW_NB15_%s-set.csv' % x for x in ['training', 'testing'] ] feature_file = 'UNSW/feature_names_train_test.csv' headers, _, _, _ = unsw.get_feature_names(feature_file) symbolic_features = unsw.discovery_feature_volcabulary(dataset_names) integer_features = unsw.discovery_integer_map(feature_file, dataset_names) continuous_features = unsw.discovery_continuous_map( feature_file, dataset_names) X, y = get_dataset(dataset_names[0], headers, 'unsw') test_X, test_y = get_dataset(dataset_names[1], headers, 'unsw') train_dict = dict() test_dict = dict() merged_inputs = [] embeddings = [] large_discrete = [] merged_dim = 0 merged_dim += build_embeddings(symbolic_features, integer_features, embeddings, large_discrete, merged_inputs, X, test_X, train_dict, test_dict, 'unsw') merged_dim += len(continuous_features) cont_component = build_continuous(continuous_features, merged_inputs, X, test_X, train_dict, test_dict, 'unsw') logger.debug('merge input_dim for UNSW-NB dataset = %s' % merged_dim) merge = concatenate(embeddings + large_discrete + [cont_component], name='concate_features_unsw') h1 = Dense(hidden[0], activation='relu', name='h1_unsw')(merge) dropout = Dropout(drop_prob)(h1) h2 = Dense(hidden[1], activation='relu', name='h2_unsw')(dropout) bn = BatchNormalization(name='bn_unsw')(h2) h3 = Dense(hidden[2], activation='sigmoid', name='sigmoid_unsw')(bn) sm = Dense(2, activation='softmax', name='output_unsw')(h3) model = Model(inputs=merged_inputs, outputs=sm) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() history = model.fit(train_dict, {'output_unsw': y}, batch_size, num_epochs) modnet['unsw_loss'].append(history.history['loss']) score = model.evaluate(train_dict, y, y.shape[0]) logger.debug('modnet[unsw] train loss\t%.6f' % score[0]) logger.info('modenet[unsw] train accu\t%.6f' % score[1]) modnet['unsw']['train'].append(score[1]) score = model.evaluate(test_dict, test_y, test_y.shape[0]) logger.debug('modnet[unsw] test loss\t%.6f' % score[0]) logger.info('modenet[unsw] test accu\t%.6f' % score[1]) modnet['unsw']['test'].append(score[1]) model.save_weights('ModalityNets/modnet_unsw.h5') # np.savez('ModalityNets/unsw_EX.npy', train=EX, test=EX_test) return merge, merged_inputs, train_dict, test_dict, y, test_y
def get_unsw_data(): dataset_names = [ 'UNSW/UNSW_NB15_%s-set.csv' % x for x in ['training', 'testing'] ] feature_file = 'UNSW/feature_names_train_test.csv' headers, _, _, _ = unsw.get_feature_names(feature_file) symbolic_features = unsw.discovery_feature_volcabulary(dataset_names) integer_features = unsw.discovery_integer_map(feature_file, dataset_names) continuous_features = unsw.discovery_continuous_map( feature_file, dataset_names) X, y = get_dataset(dataset_names[0], headers, 'unsw') X_test, y_test = get_dataset(dataset_names[1], headers, 'unsw') train_dict = dict() test_dict = dict() input_layer = [] embeddings = [] large_discrete = [] merged_dim = 0 merged_dim += build_embeddings(symbolic_features, integer_features, embeddings, large_discrete, input_layer, X, X_test, train_dict, test_dict, 'unsw') merged_dim += len(continuous_features) cont_component = build_continuous(continuous_features, input_layer, X, X_test, train_dict, test_dict, 'unsw') pprint('merge input_dim for UNSW-NB dataset = %s' % merged_dim) merged_layer = concatenate(embeddings + large_discrete + [cont_component], name='concate_features_unsw') model = Model(inputs=input_layer, outputs=merged_layer) model.compile('adam', 'mse') model.summary() MX = model.predict(train_dict) MX_test = model.predict(test_dict) return MX, MX_test, y, y_test
name='embed_%s' % name)(column) temp = Flatten(name='flat_%s' % name)(temp) embeddings.append(temp) merged_dim += dim_E else: large_inputs.append(column) print('Large feature %s is treated as continuous' % name) mm = MinMaxScaler() raw_data = raw_data.reshape((len(raw_data), 1)) test_raw_data = test_raw_data.reshape((len(test_raw_data), 1)) mm.fit(np.concatenate((raw_data, test_raw_data), axis=0)) train_dict[name] = mm.transform(raw_data) test_dict[name] = mm.transform(test_raw_data) merged_dim += 1 continuous_features = discovery_continuous_map(feature_file, dataset_names) continuous_inputs = Input(shape=(len(continuous_features), ), name='continuous') merged_inputs.append(continuous_inputs) raw_data = X[continuous_features.keys()].as_matrix() test_raw_data = test_X[continuous_features.keys()].as_matrix() mm = MinMaxScaler() mm.fit(np.concatenate((raw_data, test_raw_data), axis=0)) train_dict['continuous'] = mm.transform(raw_data) test_dict['continuous'] = mm.transform(test_raw_data) merged_dim += len(continuous_features) print('merge input_dim for this dataset = %s' % merged_dim) merge = concatenate(embeddings + large_inputs + [continuous_inputs], name='merge_features') h1 = Dense(400, activation='relu', name='hidden1')(merge)