from preprocess import get_test_train_data from save_load import get_last_file_number from save_load import load from model import accuracy, loss from keras import backend import sys, os import tensorflow as tf from utils import visualize_layers if __name__ == '__main__': file = "F:\Projects\python\self_driving_game\data\dataset_mini.pz" if len(sys.argv)<=1: count = None else: count = int(sys.argv[1]); # Load model exp_folder = 'exp_' + '{0:03d}'.format(get_last_file_number(prefix='exp_', suffix='')) model = load(count, path=exp_folder) # Visualize model x_train, x_test, y_train, y_test = get_test_train_data(file, 10, tanh=True) visualization_folder = exp_folder + '/visualization' if not os.path.exists(visualization_folder): os.makedirs(visualization_folder) visualize_layers(model, x_test, path=visualization_folder) print('Visualization done...!')
if __name__ == '__main__': # # Print output to file # outfolder = 'exp_' + '{0:03d}'.format(get_last_file_number(prefix='exp_', suffix='') + 1); os.makedirs(outfolder) # outfile = outfolder + '/' + 'train_' + '{0:03d}'.format(get_last_file_number(path=outfolder) + 1) + '.log' # print('Printing to logfile at', outfile) # sys.stdout = open(outfile, 'w+') # Add title to logfile for identification # if len(sys.argv)>1: print('Title:',sys.argv[1],'\n\n') # Get test and train data file = os.environ['DATA_DIR'] + "/dataset_75p_gray.pz" x_train, x_test, y_train, y_test = get_test_train_data(file, 80000, tanh=False) # x_train, x_test, y_train, y_test = get_test_train_data(file, 1000, tanh=False) learning_rate = 0.0005 models = ['relu_with_scaled_sigmoid'] drop_rates = [0.1] for i in range(len(models)): for j in range(len(drop_rates)): # Print output to file outfolder = 'exp_' + '{0:03d}'.format( get_last_file_number(prefix='exp_', suffix='') + 1) os.makedirs(outfolder) outfile = outfolder + '/' + 'train_' + '{0:03d}'.format(