def load_data(self, source=1): if source == 1: self.numCategory, self.label_map, self.inv_label_map, self.x_train, self.y_train, self.x_val, self.y_val, self.x_test, self.y_test = \ preprocess.processing( input_dir='../input/Category and Attribute Prediction Benchmark/Img', labels_dir=r'../list_attr_cloth.txt', gt_dir=r'../list_attr_img.txt' ) else: self.numCategory, self.label_map, self.inv_label_map, self.x_train, self.y_train, self.x_val, self.y_val, self.x_test, self.y_test = \ preprocess.processing( input_dir='../input/Category and Attribute Prediction Benchmark/Img' )
def main(arg=None): #load npz file. weights = np.load('./vgg16_weights.npz') #Weights_Tranined store the data of vgg16_weights.npz that download from internet. #For example: As a member of Weights_Tranined, 'conv11_w' corresponds with the # weights of the first conv3-64. 'conv11_b' corresponds with the bias # of the first conv3-64. w_trained = Weights_Tranined(weights) #Build training and validation sets data_path = os.path.join(os.getcwd(), 'fmnist') print(data_path) imgs, labels = pre.processing(data_path, CLASS_NUM) train_img, train_label, validation_img, validation_label = pre.split( imgs, labels) print(train_img.shape) print(train_label.shape) train_model(t_x=train_img, t_y=train_label, weights=w_trained, dprate=DROPOUT_RATE, imgsize=IMG_SIZE, imgchannel=IMG_CHANNEL, batchsize=BATCH_SIZE, train_step=TRAINING_STEP, learningrate=LEARNING_RATE_BASE, learningdecay=LEARNING_RATE_DECAY, regurate=REGULARIZATION_RATE)
def build_single_index(temp_files, document, docID): """This method controls the processing of a document and the adding of the terms to the single index.""" terms = preprocess.processing(document, 'single') append_to_index(terms, docID) temp_files = check_mem_constraint(temp_files) return temp_files
def build_positional_index(temp_files, document, docID): """This method controls the processing of a document and the adding of the terms to the phrase index.""" tokens = preprocess.processing(document, 'positional') append_to_index_position(tokens, docID) global count global memory_constraint if count > memory_constraint: temp_files = write_to_temp_position(temp_files) count = 0 return temp_files
def processImage(imgFileName): path = os.path.join('C:/Users/prashant/Desktop/third/minorProject/images/', imgFileName) processed = preprocess.processing( path) #this sends image to next module for preprocessing. print(path) print('\n--------------PREDICTIONS------------------\n') x = image.img_to_array(processed) x = np.expand_dims(x, axis=0) with graph.as_default(): set_session(sess) prediction = model.predict(x, batch_size=None) print("Risk factor from image = ", prediction, type(prediction)) print('\n') value = prediction[0][0] print(type(value)) return value
end = time.time() print('Preprocessing finished in {} seconds'.format(end-start)) net = dan.Net(hiddenDim = 52) net.train(train, dev, verbose = False) torch.save(net.state_dict(), 'C:/Users/jack1/Documents/CS5304-Final-Project-Data-Science') ''' net = dan.Net(hiddenDim=52) net.load_state_dict( torch.load( 'C:/Users/jack1/Documents/CS5304-Final-Project-Data-Science/net_dict.pt' )) print( '\n\t REAL OR FAKE: a proof-of-concept\n\tby Irene, Aayushi and Jack\n\n') print('Enter "exit" at any time to shut down the application.') response = 'xxx' while not response == 'exit': response = input('Please enter a tweet: ') text = [response] proc_text = [preprocess.processing(i) for i in text] vec = [preprocess.tweet_vec(tweet, word2vec) for tweet in proc_text] _, y_stars = net.get_eval_data(vec, mode='test') if y_stars[0] == 0: print('non-Disaster') elif y_stars[0] == 1: print('Disaster') print('Thank you for using REAL OR FAKE!')