示例#1
0
def dataset_to_npy(mat_file):
    dataset = SVHNDataset.from_mat(mat_file)
    print(f"{mat_file} set has {len(dataset)} samples")

    batch = np.zeros((len(dataset), 32, 32, 4),
                     dtype=np.uint8)  # Augment the 3rd dimension of dataset
    batch[:, 0, 0, 3] = dataset.labels.squeeze(
    )  # and store label in the 0, 0 element of that axis
    batch[:, :, :, 0:3] = dataset.images
    print(f"{np.max(batch)}/{np.min(batch)}/{np.mean(batch)}/{np.std(batch)}")
    np.save(f"dataset_split/arrays/{split_path(mat_file)[0]}", batch)
示例#2
0
def dataset_to_image_dir(config):
    file_name = config["general"].get("dataset_all")
    if not os.path.exists(file_name):
        os.makedirs("dataset_split", exist_ok=True)
        train_set = SVHNDataset.from_mat(config["general"].get("train_mat"))
        plotter = SVHNPlotter(output_dir="dataset_split/images/training")
        file_names = plotter.save_images(train_set)
        df = pd.DataFrame()
        df["labels"] = train_set.labels.flatten()
        df["file_names"] = file_names
        df.to_csv(file_name, index=False)
def plot_ae(config: cp.ConfigParser, tag=None):
    ae_model = config["general"].get("ae_model")
    color_mode = config["general"].get("color_mode")
    tag = config["plot"].get("tag") if tag is None else tag
    exp_dir = f"experiments/{tag}"
    print(f"loading experiment results from {exp_dir}")

    train_set = SVHNDataset.from_mat("dataset/train_32x32.mat")
    if color_mode == "grayscale":
        converter = ColorConverter(color_mode)
        train_set = converter.transform(train_set)

    with open(os.path.join(exp_dir, f"autoencoder.json"), "r") as f:
        autoencoder = model_from_json(f.read())  # type: Model
    autoencoder.load_weights(os.path.join(exp_dir, f"autoencoder_final.h5"))

    n = 10
    if ae_model == "cnn":
        decoded = autoencoder.predict(train_set.images[:n] / 255)
    else:
        decoded = autoencoder.predict(train_set.images_flatten[:n] / 255)
    plt.figure(figsize=(20, 4))
    plt.gray()
    for i in range(n):
        ax = plt.subplot(2, n, i + 1)
        plt.imshow(train_set.images[i].squeeze() / 255)
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)

        ax = plt.subplot(2, n, i + 1 + n)
        decoded_img = decoded[i]

        if ae_model == "mlp":
            decoded_img = decoded_img.reshape(
                32, 32, 3 if train_set.color_mode == "rgb" else 1)
        decoded_img = decoded_img.squeeze()
        plt.imshow(decoded_img)
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
    plt.savefig(os.path.join(exp_dir, "ae_compare.png"))
from preprocessing.dataset import SVHNDataset
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

if __name__ == "__main__":
    train_set = SVHNDataset.from_mat("dataset/train_32x32.mat")
    print(train_set)
    n = int(0.1 * len(train_set))
    shuffle_idx = np.random.permutation(range(len(train_set)))

    sns.distplot(train_set.images[:, :, :, shuffle_idx[:n]].flatten(),
                 label=f"{train_set.color_mode}")
    plt.savefig(f"images/distplot_train_{train_set.color_mode}.png")
    train_set.set_gray_scale()
    sns.distplot(train_set.images[:, :, :, shuffle_idx[:n]].flatten(),
                 label=f"{train_set.color_mode}")
    plt.grid()
    plt.xlabel("Pixel Value")
    plt.ylabel("Ratio of observations")
    plt.legend()
    plt.savefig(f"images/distplot_{train_set.name}.png")
    plt.close()
示例#5
0
 def test_from_mat(self):
     ds = SVHNDataset.from_mat("dataset/test_32x32.mat")
     assert ds.name == "test_32x32"