def process(self): data_list = [] indices_train = [] indices_val = [] indices_test = [] infile = open("test_al_50.index", "r") for line in infile: indices_test = line.split(",") indices_test = [int(i) for i in indices_test] infile = open("val_al_50.index", "r") for line in infile: indices_val = line.split(",") indices_val = [int(i) for i in indices_val] infile = open("train_al_50.index", "r") for line in infile: indices_train = line.split(",") indices_train = [int(i) for i in indices_train] targets = dp.get_dataset("alchemy_full", multigregression=True) tmp_1 = targets[indices_train].tolist() tmp_2 = targets[indices_val].tolist() tmp_3 = targets[indices_test].tolist() targets = tmp_1 targets.extend(tmp_2) targets.extend(tmp_3) node_labels = pre.get_all_node_labels_allchem(True, True, indices_train, indices_val, indices_test) matrices = pre.get_all_matrices("alchemy_full", indices_train) matrices.extend(pre.get_all_matrices("alchemy_full", indices_val)) matrices.extend(pre.get_all_matrices("alchemy_full", indices_test)) for i, m in enumerate(matrices): print(i) edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 one_hot = np.eye(83)[node_labels[i]] data.x = torch.from_numpy(one_hot).to(torch.float) data.y = data.y = torch.from_numpy(np.array([targets[i] ])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])
def process(self): data_list = [] indices_train = [] indices_val = [] indices_test = [] infile = open("test.index.txt", "r") for line in infile: indices_test = line.split(",") indices_test = [int(i) for i in indices_test] infile = open("val.index.txt", "r") for line in infile: indices_val = line.split(",") indices_val = [int(i) for i in indices_val] infile = open("train.index.txt", "r") for line in infile: indices_train = line.split(",") indices_train = [int(i) for i in indices_train] dp.get_dataset("ZINC_train") dp.get_dataset("ZINC_test") dp.get_dataset("ZINC_val") node_labels = pre.get_all_node_labels_ZINC(True, True, indices_train, indices_val, indices_test) targets = pre.read_targets("ZINC_train", indices_train) targets.extend(pre.read_targets("ZINC_val", indices_val)) targets.extend(pre.read_targets("ZINC_test", indices_test)) matrices = pre.get_all_matrices("ZINC_train", indices_train) matrices.extend(pre.get_all_matrices("ZINC_val", indices_val)) matrices.extend(pre.get_all_matrices("ZINC_test", indices_test)) for i, m in enumerate(matrices): edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 one_hot = np.eye(445)[node_labels[i]] data.x = torch.from_numpy(one_hot).to(torch.float) data.y = data.y = torch.from_numpy(np.array([targets[i] ])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])
def process(self): data_list = [] targets = dp.get_dataset("alchemy_full", multigregression=True).tolist() node_labels = pre.get_all_node_labels("alchemy_full", True, True) matrices = pre.get_all_matrices("alchemy_full", list(range(202579))) for i, m in enumerate(matrices): edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 one_hot = np.eye(83)[node_labels[i]] data.x = torch.from_numpy(one_hot).to(torch.float) data.y = data.y = torch.from_numpy(np.array([targets[i] ])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])
def process(self): data_list = [] targets = dp.get_dataset("QM9", multigregression=True).tolist() attributes = pre.get_all_attributes("QM9") node_labels = pre.get_all_node_labels("QM9", False, False) matrices = pre.get_all_matrices("QM9", list(range(129433))) for i, m in enumerate(matrices): edge_index_1 = torch.tensor(matrices[i][0]).t().contiguous() edge_index_2 = torch.tensor(matrices[i][1]).t().contiguous() data = Data() data.edge_index_1 = edge_index_1 data.edge_index_2 = edge_index_2 one_hot = np.eye(3)[node_labels[i]] data.x = torch.from_numpy(one_hot).to(torch.float) # Continuous information. data.first = torch.from_numpy(np.array( attributes[i][0])[:, 0:13]).to(torch.float) data.first_coord = torch.from_numpy( np.array(attributes[i][0])[:, 13:]).to(torch.float) data.second = torch.from_numpy( np.array(attributes[i][1])[:, 0:13]).to(torch.float) data.second_coord = torch.from_numpy( np.array(attributes[i][1])[:, 13:]).to(torch.float) data.dist = torch.norm(data.first_coord - data.second_coord, p=2, dim=-1).view(-1, 1) data.edge_attr = torch.from_numpy(np.array(attributes[i][2])).to( torch.float) data.y = torch.from_numpy(np.array([targets[i]])).to(torch.float) data_list.append(data) data, slices = self.collate(data_list) torch.save((data, slices), self.processed_paths[0])